DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS 401 COMPUTER GRAPHICS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

- Established in: 2002
- Course offered : B.Tech in Computer Science and Engineering
M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

- Approved by AICTE New Delhi and Accredited by NAAC

Affiliated to the University of A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process
2. To Promote cutting-edge Research and Development Process to solve real world problems with emerging technologies.
3. To Inculcate Entrepreneurship Skills among Students.
4. To cultivate Moral and Ethical Values in their Profession.
5.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering through lifelong learning.
PEO2: Graduates will be able to analyze, design and development of novel Software Packages, Web Services, System Tools and Components as per needs and specifications.
PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by learning and applying new technologies.
PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, Teamwork and leadership qualities.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Realtime Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality System Software Tools and Efficient Web Design Models with a focus on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOMES

C401.1	Demonstrate Various Graphics Devices
C401.2	Analyze and implement algorithms for Line, Circle, Polygon drawing
C401.3	Apply geometrical transformation on2D Objects
C401.4	Analyze and implement algorithms for clipping and illustrate 3D graphics representations.
C401.5	Apply various projection technics on 3D objects and hidden line elimination techniques.
C401.6	Demonstrate the various concepts of image processing

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO'S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO11	PO12
C401.1	3	-	2	-	-	-	-	-	-	-		-	3
C401.2	3		3	2	3	-	-	-	-	-		-	-
C401.3	3		3	-	3	-	-	-	-	-		-	2
C401.4	3	3	2	-	2	-	-	-	-	-		-	2
C401.5	3	2	3		3	-	-	-	-	-		-	3
C401.6	3	3	3	3	3	-	-	-	-	-		-	3
C401	3	2.67	2.67	2.5	2.8	-	-	-	-	-		-	2.6

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CO'S	PSO1	PSO2	PSO3
C401.1	3		
C401.2	3		
C401.3		3	
C401.4		3	
C401.5			3
C401.6	3		
C401	3	3	3

Course code	Course Name	L-T-P Credits	Year of Introduction
CS401	COMPUTER GRAPHICS	$4-0-0-4$	2016

Course Objectives :

- To introduce concepts of graphics input and display devices.
- To discuss line and circle drawing algonithms.
- To introduce 2D and 3D transformations and projections.
- To introduce fundamentals of image processing.

Syllabus:

Basic Concepts in Computer Graphics. Input devioes. Disptay devices. Line and circle drawing Algorithms. Sotid area scan-conversion. Polygon filling. Two dimensional transformations. Windowing, clipping. 3D Graphics, 3D transformations. Projections - Parallel, Perspective. Hidden Line Elimination Algorithms. Image processing - digital image representation - edge detection - Robert, Sobel, Canny edge detectors. Scene segmentation and labeling - regionlabeling algorithm - perimeter measurement.

Expected Outcome:

The Students will be able to:
i. compare various graphics devices
ii. analyze and implement algorithms for line drawing, circle drawing and polygon filling
iii. apply geometrical transformation on 2D and 3D objects
iv. analyze and implement algorithms for clipping
v. apply various projection techniques on 3D objects
vi. summarive visible surface detection methods
vii. interpret various concepts and basic operations of image processing

Text Books:

1. Donald Heam and M. Pauline Baker, Computer Graphics, PHI, 2e, 1996
2. E. Gose, R. Johnsonbaugh and S. Jost., Pattem Recognition and Image Analysis, PHI PIR, 1996 (Module VI - Image Processing part)
3. William M. Newman and Robert F. Sproull , Principles of Interactive Computer Graphics. McGraw Hill, 2e, 1979
4. Zhigang Xiang and Roy Plastock. Computer Graphics (Schaum's outline Series), McGraw Hill, 1986.

References:

1. David F. Rogers, Procedural Elements for Compuer Graphics, Tata McGraw Hill, 2001.
2. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, A naly sis, and Machine Vision, Thomson India Edition, 2007.
3. Rafael C. Gorzalez and Richard E. Woods, Digital Image Processing. Pearson, 2017

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
I	Basic concepts in Compuler Graphics - Types of Giaphic Devices - Interactive Graphic inputs - Raster Scan and Random Scan Displays.	7	15\%
II	Line Drawing Algorithm- DDA, Bresenham's algorithim - Circle Generation Algorithms -Mid point circle algonithm, Bresenham's algorithm- Scan Corversion-frame buffers - solid area scan conversion - polygon filling algorithms	8	15\%
FIRST INTERNAL EXAM			
III	Two dimensional transformations. Homogeneous coordinate systems - matrix formulation and concatenation of transformations. Windowing conoepts - Window to View port Transformation- Two dimensional clipping-Line clipping - Cohen Sutherland, Midpoint Subdivision algorithm	8	15\%
IV	Polygon clipping-Sutherland Hodgeman algorithm, Weiler- Atherton algonithm, Three dimensional object representation- Polygon surfaces, Quadric surfaces - Basic 3D transformations	8	15\%
SECOND INTERNAL EXAM			
V	Projections - Parallel and perspective projections - vanishing points. Visible surface detection methods- Back face removal- Z-Buffer algorithm, A-buffer algorithm, Depth-sorting method, Scan line algorithm.	9	20\%
VI	Image processing - Introduction - Fundamental steps in image processing - digital image representations - relationship between pixels - gray level histogram -spatial convolution and correlation - edge detection - Robert, Prewitt, Sobel.	8	20\%
END SEMESTER EXAM			

Question Paper Pattern (End semester exam)

1. There will be FOUR parts in the question paper - A, B, C, D
2. Part A
a. Total marks : 40
b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules 1 \& II; THREE questions from modules III \& IV;
FOUR questions from modules V \& VI).
All the TEN questions have to be answered.
3. Part B
a. Total marks: 18
b. THREE questions, each having 9 marks. One question is from module I; one question is from module II; one question uniformly covers modules I \& II.
c. Any TWO questions have to be answered.
d. Each question can have maximum THREE subparts.

4. Part C

a. Total marks: 18
b. THREE questions, each having 9 marks. Ore question is from module III; one question is from madule IV: one question uniformly covers modules III $\&$ IV.
c. Any TWO questicns have to be answered
d. Each question can have maximum THREE subparts.

5. Part D

a. Total marks : 24
b. THREE questions, each having 12 marks. One question is from module V : one question is from module V ; one question unijormly covers modules V \& VI
c. Any TWO questicons have to be answered.
d. Each question can have maximum THREE subparts.
6. There will be AT LEAST 50% analytical/numerical questions in all possible combinations of question choies.

QUESTION BANK

CS401-COMPUTER GRAPHICS

MODULE I				
$\begin{gathered} \hline \text { SL } \\ \text { NO. } \end{gathered}$	QUESTIONS	COS	KL	$\begin{array}{\|c} \hline \mathrm{PA} \\ \mathrm{GE} \\ \mathrm{NO} . \end{array}$
1.	Explain the working of beam penetration method	CO1	K5	24
2.	Explain the working of random scan system with suitable diagram	CO1	K5	31
3.	Describe the working about shadow mask CRT with suitable diagram	CO1	K2	25
5.	Differentiate between random scan and raster scan system	CO1	K4	36
6.	Describe simple random scan display system	CO1	K2	14
7.	Describe flat panel display and its different categories	CO1	K2	27
8.	Write any two interactive graphic input devices	CO1	K1	15
9.	What do you mean by aspect ratio and resolution of a display screen in a raster scan display	CO1	K1	19
10.	Explain the working of raster scan display	CO1	K5	19
11.	Differentiate emmisive and non emissive displays	CO1	K4	27
12.	Explain the working of LED	CO1	K3	29
MODULE II				
1.	Write the midpoint circle drawing algorithm	CO2	K1	53
2.	Write bresenhams line drawing algorithm and plot the points on the line having given endpoints using bresenhams line drawing algorithm	CO2	K3	45

3.	Describe ODD-EVEN rule test and Non zero winding number	CO 2	K2	76
4.	Write flood fill polygon filling algorithm	CO 2	K1	81
5.	Describe the relevance and various methods used in inside-outside test used in polygon filling	CO 2	K2	76
6.	Scan convert the line segments with given end points using DDA line algorithm	CO 2	K5	39
7.	Which are the steps involved scan line polygon filling algorithm	CO 2	K5	69
8.	Write flood fill polygon filling algorithm	CO 2	K1	81
MODULE III				
1.	Which are the steps involved in window to viewport coordinate transformation in 2D	CO3	K1	109
2.	Derive an equation for window to viewport transformation	CO3	K5	110
3.	For the given triangle Find the coordinates of vertices after each of the following transformation i)Reflection about the line $x=y$ ii) Rotation of the triangle ABC about vertex A in clockwise direction for an angle 90 degree	CO 3	K5	106
4.	Give the equation and matrix form representation of scaling transformation	CO3	K1	90
5.	Give the matrix representation of translation and rotation in homogenous coordinate	CO3	K1	94
6.	Describe about shear	CO3	K2	102
7.	Explain midpoint algorithm with example	CO3	K3	121
8.	Describe cohen Sutherland line clipping algorithm with example	CO3	K2	115
MODULE IV				
1.	What are the different tables used for polygon surfaces. Illustrate each with an example.	CO4	K1	134
2.	Briefly explain the basic 3D transformations with its equation	CO4	K5	141

3.	Explain Sutherland Hodgeman polygon clipping algorithm with illustration.	CO 4	K 5	124
4.	Write the two types of polygon meshes with example	CO 4	K 1	130
5.	Explain about weiler Atherton algorithm ,its different steps and illustrate the algorithm with an example	CO 4	K 5	129
6.	Briefly explain about quadric surfaces and write down about sphere and ellipsoid	CO 4	K 5	132
7.	Explain about the polygon surfaces	CO 4	K 3	134
8.	Write down the plane equation	CO 4	K 1	137
9.	Write the equations for basic 3D transformation	CO 4	K 1	141
10	Explain about the different polygon tables	CO 4	K 3	135
11.	Describe briefly about polygon clipping	CO 4	K 5	123
12.	Write equation for torus and ellipsoid	CO 4	K 1	153

MODULE V

1.	Write the A -buffer algorithm for hidden surface removal	CO5	K2	185
2.	Differentiate between parallel and perspective projection	CO5	K 4	157
3.	Differentiate between image space and object space method	CO5	K4	177
4.	Describe briefly about parallel projection	CO5	K5	158
5.	What are the different categories of axonometric projection	CO5	K2	162
6.	Explain in detail about Z buffer algorithm	CO5	K5	180
7.	Briefly describe about the various visible surface detection algorithms	CO 5	K 5	176
8.	Differentiate cavalier and cabinet projection	CO5	K4	163
9.	Explain in detail about scan line algorithm for VSD by pointing out the data structure used in this algorithm	CO5	K5	187
10.	Differentiate between orthographic and oblique projection	CO5	K4	160
11.	Explain back face removal algorithm	CO5	K5	178
12.	Describe depth sorting algorithm	CO5	K5	190

MODULE VI

1.	What do you understand by the following terms with respect to pixels Neighbours and Adjacency	C06	K1	206
2.	Explain the fundamental steps in digital image processing	C06	K5	195
3.	Briefly explain about prewitt and sobel edge detection method	C06	K5	211
4.	What is edge detection? Explain any one edge detection method in DIP	C06	K1	209
5.	Describe the different components used in DIP	C06	K2	199
6.	Explain about bitmap image	C06	K3	202

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO;	TOPIC	PAGE NO:
1.	Types of Curves	214
2.	Visual Perception	217

MODULE NOTES

MOO-I
Rasic Aovepti in Cionpuita Cromplode
Compete Gopaphice is a procere of caualien, mantpulalions. stozage and displey of pidices and eqpesimanal dola for pioper veralization veing a compute.
Computer graphies system compreics of a host comprtes. With suppat of fast procosos, lase memory, frame bryfer and crraphics devew.
Applications of Computes cosophies

1. Compuites Aioled Design (COD)

A majos. use of computes graphics is in design prereses, $C A D$ mettads ase used is the design of bruldings, automotide, aircraft. Watercagt, spacecraft, computies, textiles and many other peoducts.
2. presentation Graphies
persentation Graphics is used to peoduce illustrations for Repoet on to generate slides on transpasenuis fon use with peofedur g^{t} is commonly used to summerize financial, statitical, mathematical, scientifie and economia data for reseach rapocts, managerial repoets, consumer information bulletinis and other types of repoete.
3. Computer Art

Compenter graphics mothods an widily used in bots fine art and commovcial ail application. Artis li use a variely of Computie methuls, including special puppos hadeuree,
artist's paintbrush programs (such ar Lumens), other pain packages. Specially developed softwau, symbolic mathematic packages. CAD packages, desktop publishing saptware and animation packages that provide facilities for designing object shaper and specifying object morions.
4. Entertainment

Computer graphics methods an commonly used in making motion pictures, mus ie videos and television shows. sometimes the graphics scenes are displayed by themselves and sometime graphics objects are combried with the actors and line sene. Graphics is used in morphing
5. Education and Training

Computer generated models of physical, financial and economic systems av often used as educational aids.
for some braining applications special system like simulates are designed for the practical session on traning of ship captains, aircraft piolets, heavy-equipment operators and air traffic - control.
6. Vi ualization
scientists, engineers, medical personnel, business analysts and others often need to analyze large amount of information Or study behaviour of certain processes. Numerical simulation carried out on superompulís prequenilly produce data file which contains thousands and even millions of data value. producing graphical representations for sucintyic engineering and medical data sets and processes is geneally heed to as
scientific visualization. Busuriss visualization is used is Connection with data sets related to commerce, industry and other nonscientific areas.
A collection of $2 D$ or $3 D$ dataset contain scalar Values, vectors, higher-ordes tensors on any combination of these data types. Additional techniques like contour plots, graphs, charts are used to produce data $v i$ sualizations
M_{a} themälicians, physical scientiels and others use visual techniques to analyze mathematical functions and processes.
7. Image processing
image processing is a technique to intuput ox modify the existing pictures such as photographs and TV scans. The two application of image peocesion are improving picture quality and machine perception of visual information used in robotics:
Types of Graphic Devices
Graphics systems campuses of a host computer with support of fast processor, large, frame buffer and

- Display devices
- Input devices
- output devices
- Interfacing device

The primary output devices in a graphics system is a video monitor. The operation of most video monitors i based
on the standard cathode -ray tube (CRT)
Cathode-Ray Tube
The following figure illustrate the basic operation of a Cl , A beam of elections (cathode rays) emitted by an election gun passes through focusing and deflection systems that direct the beam towards specified positions on the phosphe. coated screen. The phos phase then emits a small spot of light at each position contacted by the election beam. The light emitted by the phosphene fades very rapidly and to keep the phospher glowing, the pickier is redrawn Repeatedly by quickly directing the election beam back over the same points. This type of display is called a Repast CRT

The primary components of an election gun in a CRT an the heated metal cathode and a control grid. Heal is supplied to the cathode by directing a current through a coil of wire called filament, inside the cylindrical cathode stenctive This causes elections to be boiled off the hot cathode surfer In the Vacuum inside the CRT envelope, the free negatively charged elections are then acceluated towards the phospher coating by a high positive voltage. The acculuating voltage

Can be generated with a positively changed metal coating on the inside of the CRT enulope near the phosphor screen or an a cceluating anode can be used.

Intensity of the election beams is controlling by setting the voltage levels on the controt grid, which is a metal cylinder that fils over the cathode. A high negative voltage applied to the contret grid will shut off the bean by repelling elections and stopping them from the passing through the small hole at the end of the control gid structure. A small negative voltage on the canter gid simply deceases the numties of elections passing thong.
The amount of light emitted by the phospher coating depend on the number of elections striking the screen. The thightre of the display can he contedled by varying the voltage on the control gid.
The focusing system in the CRT is needed to force the election beam to converge into a small spot as it strike the phospher. otherwise the elections would repel each other,
and the beams would spread out as it approaches the screen. Focusing is done with either electric or magnetic fiald. Electiosfatii focusing is mainly used in television and computer graphics monitors. for high precision systems additions. focusing hardware is used. The distance that the election beam must travel to different points on the screen varies because the radius of curvature for most of the CRT; is greater than the distance from the focusing systems to the sven centre

With focusing system, deflection of the elution beam can he Controlled either with electric fields or with onagniilic fields. Catrode-ray tubes are commonly constructed $w_{H} H_{3}$ magnetic deflection coils mounted on the outside of the $C R 7$ envelop as shown in the above fig. Two pairs of coil are used, with the coils in each paie mounted on opposite. sides of the neck of the CRT envelope. One pair is mounted on the top and bottom of the neck, and the other pair is mounted on opposite sides of the neck. The magnectei field produced by each pair of coils results in a transverse deflection force that is papendicular both to the direction of the magnetic field and to the direction of travel of the election babe. Horizontal and vertical deflection is accomptuthel by two different pairs of coils.
when electrostatic deflection is used, two paris of parallel plates ar mounted inside the CRT envelope. On pair of plates is mounted horizontally to contr the vertical deflection, and other pair is mounted vertically to control horizontal deflection.

fig: Electrostatic dylution of the elution beam in a CRT
Resolution is the maximum number of points that can le displayed without auselap on a CRT. Resolution of a CRT is dependent on the type of phosphor, intensify to be displayed, focusing system and deflection system. Higher Resolution available on many systems is 1280
and 1024. They are often refereed to as high-definitioi System.
Aspect ratio is another proferenty of video monitors. This number gives the ratio of vertical points to horizontal point necessary to produce equal-lingth lines in both directions on the screen.

Raster Scan Display
The most common type of graphics monitor employing. CRT is the raster-scan display, based on television technology. In a raster scan system, the electron beam is swept across the screen, one how at a time from top to bottom. As the election beam moves across each row, the beam intensity is then on and off to create a patten of illuminated spots.
picture dyinition is stored in a memory area called repuech buffer or frame buyer. This memory area holds
the set of intensity values for all the screen points. stored intensity values are then hetreined from the regesh buffer and painted on the screen one how (Sca nine) at a tries. as shown in the below figure.

fig: Raster scan s_{7} stem displays an object as 0 set of diceretr points acroseach scan line
Each screen point is referred to as a pixel or pel. The Capability of a raster scan system to store intensity information for each screen points makes ir suited for the realistic display of scenes Containing shading and Color patterns
Eg: Home television sets and printers are using raster scan methods.
Intensity range for pixel positions depend on the eapatility of the raster system.

In a Black and while system, each sure point is either on on off. So one lit is needed to control the intensity of screen positions.
for a bitlevel system, a bit value 1 indicates that the electron beam is to lu turned on at that position and a value of 0 indicates that the beam intensity is to le off. Additional bits are needed when color and intensity variations can he displayed.
In high quality system upto 24 bits per pixel are used which requires megabytes of storage for the frame binge. A system with 24 bits per pixel and a screen resolution of 1024×1024 Requires 3 mb of storage for frame briefer. on a black and white system with one bit per pixel, the frame buffer is comenonly called a bitmap and for the system with multiple bits per pored, the frame bragger is often referee to as a pirmap
Repeshing on raster-scan duplays is at the rate of 60 to 80 frames per second.
The hetuen to the let of the screen, after refreshing each Scan line is called the horizontal retrace of the edition liam. At the end of each frame, the electron beam returns to the top left corvee of the screen to begin the none frame Called vertical retrace scanline haizenalsadóce
 vertical retrain

On some- Raster scan system interlaced refresh procedures ar used to display the frames. In the firs pass the beam sweeps out the odd numbered sean line from top to bottom. In the second pass all the even numbered scan lines are sweeps across the seen. This method is using with slower Refreshing rates.
Random Scan Displays
In random scan display, a CRT has the election been directed only to the part of the screen where the picture is to be drawn rather than scanning from left to right and top to bottom.
Random scan monitors draw a pidure one live af a time and for this reason random scan are also referred as vector displays or (stroke writing on Calligraphic display) The component lines of a picture can be drawn and refreshed by a random sean system in any specified order as shown in the following figurer.

Refresh rate on a random scan system depends on the number of lines to be displayed. picture definitions is stored as a set of line-deawing commands in an area of memory refereed to as the Expresh display fur. Repuch display file is called the display lir, display program or simply the refresh buffer.
To display a specified picture, the system cycles through The set of commands in the display file, drawing each component line in twin. After all line drawing commands have been processed, the systems cycles back to the first line command in the list. Random scan displays are dip designed to draw all the component lenis. of a picture 80 to 60 times exc second.
Random. scan systems are designed for line drawing applications and cannot display realistic shaded scenes. Vector Display on random dis plays have higher Resolution then raster display because picture dyinitio is stored as a set of linedrawing instructions and not as a set of intenitit values. for all screen points. vector displays produce smooth line drawings because the CRT beam directly follows the line path. But the Raster system in contrast produces jagged lines that as plotted as discrete point sets.

Color.CR7 Monilons
ACRT monitor displays color pictures by using a combination of phosphors that emit different Colored light. By combining the emitted light from the different phosphees a range of colors can he generated. Two basic techniques for producing color display with a CRT are the beam penetration and the shadow mask method
Beam penetration Method:-
The liam penetration method for displaying color picture n has been used with random scan monitors. Two layers of phosphor usually had and green are coated ont the inside of the CRT screen and the displayed color depends on the how far the election beam penceates into the phosphes layers.
A beam of slow election excites only the outer led lays. A beam of very fart electrons penetrates through the red layer and excites the inner green layer. A+ intermediate beam speeds, combination of red and green light are emitted to show two additional colors, orange and yellow.
The speed of elections and the screen color at any point is contedled by the beams acceleration voltage Bean penetration has lien an inexpensive way to produce color in Random scan monitors. Only fore colors are possible in this method and the quality of
pidueus is not as good as with other methods. shadow mask Method:-
This methods are commonly used in raster scan system (including color 7V) because they produce a wider range of colors than the beam penetration method. A shadow. mask CRT has the er phosphor color dols at each pixel position. one phospher dor emits a red light, another emits a green light, and the third emits a blue light. This type of CRT has there election guns, one for each color dot, and a shadow mask grid just behind the phospher coated seen. The following figurer shows the detta-dilte shadow mask method. commonly used is Color CRT system.

The there election beams an deleted and found as a group onto the shadow mask, which contains a series of holes. when the thee hear pass. through a hole in the shadow mask, they activate a dor triangle, which appears as a small color spot on
the scree. The phosphor dots in the trangles are arranged so that each election liam can actuialionly it corresponding color dor when it passes through the shadow mask.
Another configuration for the three election gun is an inline arrangement in which the three electron guns, and the corresponding red-green-blue color dor on the screen are aligned along one scan line instead of a triangular patten. This type of configuration is used in high resolution color CRT:
Color variation in a shadow-mask CRT can be obtained by varying the intensity levels of the there electron b lean White or grey area is the result of activating all three dots with equal intensity. yellow is produced with the green and led dots only. Magenta is produced with the blue 8 rad dots. Cyan s is produced when green and blue activated equally.
in sam low. cost system election heam is set to on or off 'limiting displays to eight colors.
Direct View storage Tubes
An alternative method for maintaining a screen image is to slow the picture information inside the CRT instead of refershing the screen. A direct view storage tube (DVST) Stones the picture information as a charge distribution behind the phosphor screen. Two election guns au used in the DusT. One, primary gun is used to store the
picture patten and the second the flood gun, maintains the picture display
Advantages:-
No refreshing is needed in DVS 7 , very complex pictures can he displayed at very high resolutions without flicker.
Disadvantages:-
Dust do nor display colors and selected parts of the pictures cannot be erased. To eliminate the picture section, the entice screen must be erased and modified picture redrawn.
Flat Panel Displays
Flat panel di play refer to a class of video devices that have reduced volume, weight and power sequiement compared to $C \Omega T$. Significant feature of flat panel display is that they an thinner than CRTs and we can hang them on walls or wear them on writs. current uses for flat panel dis play include small TV monelors, calculatón, pocket: video games, laptop Computer eli.
Flat panel displays are of two categoui...
i) Emissive di plays
ii) Nonemissire di plays.

The emissive derplays are devices that connect electrical energy into light. eg:- plasma panes, then-film electroluminescent display and light emitting diodes.
Nonemissire display use optical effects to convect Sunlight on light from other soceree int. graphics patten eg:-liquid aystal device.
plarmal panels are also called gas discharge displays and are constructed by filing the Region between two glans plates with a mixture of gases that includes neon. A series of vertical conducting ribbons is placed on one glass panel and a set of horizontal ribbons is built into the other glam panel. Voltage is applied to a pair of horizontal and vertical conductors cause the gas in the intusection of the tub conductors to break down into a glowing plasma of electrons $\&$ ions. picture definition a stored in a repersh buffer and the voltages an applied to refush the pixel poscionis 60 times $/ \mathrm{sec}$. If the application of voltage is faster then the brightace of display is more. The Design of The plasma panel is shown in the following figure.

fig:- Basic design of a plasma - panel display device

Thin film electroluminescent display are similar in construction to a plasma panel. The only different is that the region between the glam plate is filled with a phospher. When sufficient voltage is applied to a pair of crossing electrodes, the phosphor becomes a conductor in the area of the intersection of the two electrodes. Electroluminescent display require mon power Than plasma pane and good and grey color display are hard to acheine
Light Emitting Diode (LED)
In $\angle E D$ a matrix of diode is arranged to form the pixel positions is the display the picture dyinition is stored is a refresh buyer. Information is read from the refresh buffer and converted to voltage levels are applied to the diodes to produce the light patten. is the display.
Liquid Crystal Display (LCD)
LED; are commonly used in small systems, such as calculator and laptop computer.
The non emissive devices LCD produce a picture by passing polarized light from the surroundings on from an internal light source through a liquid crystal material that can he aligned to either black os-bansmit The light.
The teem liquid crystal refers that the compounds have a crystalline arrangements of molecules, yet they flow like a liquid. flat panel displays use nematic liquid crystal compound
that tend to keep the long axes of the rod-shaped molecule. aligned.
A flat panel display can be constructed with a nematic liquid crystal as demonstrated in the following figure. Two glass plates, each containing a light pobaiger at right angles to the other plate, sandwich the liquid crystal material. Rows of horizontal transparent conductors au brit into one glass plate, and the columns of vertical conductors an put into the other plate. The intersuliori of the two conductors defines the pixel position. Normally molecules ar aligned in the 'on state'. polarized light passing through the material is twisted so that it will pass through the opposite polarizer. The light is reflected back to the viewer
To then off the pixel, a voltage is applied to the two intersecting conductors to align the molecules so that the light is nor twisted. This type of flat-panel device is referred as a passive matrix LCD. picture definition are stored in a refresh buffer, and the soven is refreshed at the rate of 60 frames $/ \mathrm{sec}$, as in the emissive devices.
Back lighting is also applied using solid state electronci devices, so that the system is nor completely dependent on ouricide light souse. Colors can he displayed by using different materials or dyes and by placing a triad of color pixel at each screen location.
Another method of constrenting $L C D$ is to place a transistor at each pixel location using thin-film transistor e technology.

The transistors are used to control the vitages at pixel locations and to prevent charge from gradually leaking out of the liquid cassel cells. These devices ar called active matrix displays

fig: Light twisting, shutter effect used in the design of most. liquid crystal display devices
Raster Scan systems
Interactive raster graphics system consist of a special purpose processor called the video controller and display controller used to control the operation of the display device. organization of the simple raster systems is shown below

The frames buffer can he anywhere in the system memory and the video controller accesses the frame buffer to refresh the screen.
video Controller
following figures shows the commonly used organization for haster system. A fixed area of the system munary is resumed for the frame buffer and the video controller is given direst access to the frame buffer memory.

I/O Devices
fig: Architecture of taster system.
Frame buffer locations, and the corresponding susan positions are referenced in Cartesian coordinates. for many graphics monitors, the coordinate origin is defined at the lower left screen corner. The screen surface is represented as The first quadrant of a 2-D system with positive x value increasing to the right and positive va value ingrain' from bottom to top. Scanlines are labeled from ymax at the top of the seen to 0 at the bottom. Along
each scan line seen pixel positions are labeled from 0 to $x_{\text {max }}$.
The basic refresh operations of the video controller are given below.

Frame Buffer
Two Registers an used to store the coordinates of the screen pixels. Initially the x register is set to 0 and y register is set to $y_{\text {max }}$. The value stored in the frame buffer for this pixel position is then retrieved and used to set the intensity of the CRT bean. The x register is incremented by 1, and the process repeated for the nut pixel on the top scan line. This procedure is repeated for each pixel along the scan line. After the last pixel On the top.sian liner has lees processed, the x register is reset to 0 and the y register is decremented by 1 . pisces along this scan live are then processed infuen, and the procedure is repeated for each successive scan line

After cycling through all pixels along the bottom scan line $(y=0)$ the video controller resets the hegriter to the firer pixel posiluin on the top sean line and the refresh process starts over.
Raster-Scan Display processors
The purpose of the display procession is to fere the cpu from the graphics chores. In addition to the system memory, a seperate display processor memory area can also be provided.
A major task of the display processor is digitizing a picture definition given in an application program into a set of pixel-intenity values for storage in the fame buffer. This digitization precess is called scan conversion. Gradin commands specifying straight lines and other geometric objects are scan converted into a set of descale interests: points.
characters can he defined with rectangular grids ar the can be defined with curved outlines as shown in the following figurer

The array size for charalus grids can vary from about 5 by 7 to 9 by 12 or more for higher quality displays

Display processor is also designed to performs a number of additional operation. These functions include genventing vareais line styles (dashed, doted an solid) displaying cots areas, and performing certain transformations and manipulation on displayed objects. Display peocessons are dues agnised to interface with interacteni input devices, such as a mouse Randensean systems
The organization of a simple randon-scan (vector) system is shown in the following diagram. An application program is input and stored in the system memory along with a graphics package. Graphics commands in the application program au translated by the graphics package into a display file stored in the system m / m This display file is then accessed by the display processor to refresh the sues. The display processor cycles through each command is the display fill program once during event seers cycle. The display processor in a sander scan system is referred as a display processug unit or a graphic conbitlu

Graphics patters au drawn on a random sean system by directing the election liam along the component lines of the picture. Lines are defined by the valueper their coordinate endpoints and these input coordinali values are converted to x and y dylection voltage A scene is then drawn ono dire at a time by positioning the beam to fill in the line between specified endpoints.
Difference between Raster Scan and Random scan System Raster Scan

Random scan
(1) Raster scan display has low resolution as picture definition is stored as an intensity value
2) Election beam is directed from 2) The elution beam is directed top to bottom and one row at to only that pact of screens when a time on whole screen
3) Real life images can be displayed with different shade displayed
4) Lig-zag line is produced became 4) smooth line is produced beans plotted values an discrete directly the live path is followed by election head.
5) Repress rate is around $60-80$ s) Refresh rate depends on the frames / see number of lines to be displant is $30-60 \mathrm{tmis} / \mathrm{sec}$.

Points and lines
point is the fundamental element of picture representation point is the position in the plan defined as either pain. or triplets of number depending upon the dimension Two points represents a live or Edge. There or more point represents a polygon.
cured lines are represented by the shout straight lines In a random-scan (vector) system point-plotling instruction are stores is the display list, and coordinate values in these instructions are converted to deflection voltages That position the election beam at the screen locations to be plotted during each refuses cycle.
In Black and white raster system, a point is plotted by setting the bit value corresponding to a specified screen position within the frame bryce to 1 . As the election beam sweeps across each horizontal scan line, it emits a bust of elections (plots a point) whenever a Value of 1 is encountered in the frame buyer.
In an RCAB system, the frame bryfee is loaded with the color codes for the intensities that are to be displayed at the screen pixel positions.
Line drawing is accomplished by calculating intermediate positions along the line path between two specified endpoint position. An output device is directed to fill in there positions between endpoints.

For analog devices, a straight line can le drawn Smoothly from one endpoint to the other. Linearly varying horizontal and vertical deflection voltages are generated that are pectoctional to the required changes in the x and y directions to produce smooth line.
Digital devices display straight hive segments by plotting discrete points between two endpoints. Discrete coordinate position along the line pats an calculated from the equation of the line.
to load an intensity value into the frame buyer at a position (x, y) the procedure fam is setpixel $(x, y$, interisitiy) To retrieve the current frame buyer intenidy for a specified location the function is $\operatorname{getpixel}(x, y)$.

Line Drawing Algorithms
The equation for straight line is

$$
y=m x+b
$$

when ' m ' is the slope of the line
' b ' is the y intercept.
The two endpoints of a line segments an at the positions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. The value for the slope m and y-interupr b can le calculated as

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& b=y_{1}-m \cdot x_{1}
\end{aligned}
$$

For any given x interval Δx along a line, the correspondici y interval Δy can be computed by

$$
\begin{equation*}
\Delta y=m \Delta x \tag{1}
\end{equation*}
$$

similarity x interval Δx corresponding to a specified Δy as

$$
\Delta x=\frac{\Delta y}{m}
$$

Now if $\Delta x=1$ ie $x_{i+1}-x_{i}=1$ then (A) becomes

$$
\Delta y=m \cdot \quad i \quad y_{i+1}-y_{i}=m \quad \text { i } y_{i+1}=y_{i}+m
$$

Thus a unit change is ' x ' changes ' y ' by ' m ' which is a constant for a gives live.
DDA Algorithm
*The digital differential analyzer (DDA) is a scan-Conversion line algorithen based on calculating either Δy and Δx.

* The line is sample at unit intervals in one coordinate. and detumine corresponding integer values nearest the line path for other coordinate
Consider a line with positive slope as shown in the following figurer

If $m \leq 1$ then line is sample at unit x interval and the sucussine y-value will be calculated as
$y_{k+1}=y_{k}+m \quad$ Subscript k takes integer value starting from 1 and increases by 1 until reaches end point.
' m ' is a slope which is a Real number between 0 to 1 .
If $m \geq 1$ then line is sample at unit y 'interval and the succeeding x value is calculated as

$$
x_{k+1}=x_{k}+\frac{1}{m}
$$

Derivation of Equation in DDA Algorithm
DDA Atm is used to find the intermediate points between the end points of the line by calculating Δx and Δy With the use of slop ' m '.
In the above gives line in the screen each pixel on point can be calculated interns of a coordinates The sober of the line is gains by

$$
m=\frac{y}{x}
$$

Let the start point be $Z\left(x_{k}, y_{k}\right)$ and the end point he $\left(x_{k+1}, y_{k+1}\right)$
Then the slope $m=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}}$

Case-1 $\quad[m<1]$
x is change in Unit interval
ie $x_{k+1}=x_{k}+1$
ie $x_{k+1}-x_{k}=1$

$$
\begin{aligned}
& \therefore m=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}} \text { becomes } \frac{y_{k+1}-y_{k}}{1} \\
& \therefore m=y_{k+1}-y_{k} \\
& \therefore y_{k+1}=y_{k}+m
\end{aligned}
$$

Case -2 $[m>1]$
y chang in Unit intuval

$$
\begin{aligned}
& y_{k+1}=y_{k}+1 \\
& \therefore y_{k-1}-y_{k}=1 \\
& \therefore m=\frac{1}{x_{k+1}-x_{k}} \quad \text { becomes } x_{k+1}-x_{k}=\frac{1}{m} \\
& \therefore x_{k+1}=x_{k}+\frac{1}{m}
\end{aligned}
$$

Care - $3 \quad[m=1]$
x and y change in unit interval

$$
u \begin{aligned}
& x_{k+1}=x_{k}+1 \\
& y_{k+1}=y_{k}+1
\end{aligned}
$$

Algorithm:-

1. Calculate slope m
2. If $m<1$ then x changes in unit interval and
y moves in devcaluin

$$
\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}+1, y_{k}+m\right)
$$

3. If $m>1$ then x mons with deviation and y moves in unit intervals

$$
\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}+\frac{1}{m}, y_{k}+m\right)
$$

4. If $m=1$ then x and y moves in Unit intervals

$$
\left(x_{k+1}, y_{k+1}\right)=\left(x_{k+1}, y_{k}+1\right)
$$

Q plot the line Using $D D A$ algorithm having initial point as $(5,4)$ and endpoint as $(12,7)$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(5,4) \\
& \left(x_{k}, y_{k}\right)=(12,7) \\
& \Delta x=x_{k}-x_{1}=12-5=7 \\
& \Delta y=y_{k}-y_{1}=7-4=3 \\
& m=\frac{\Delta y}{\Delta x}=\frac{3}{7}=0.4<1 \\
& \text { step }=7(a b s(\Delta x)) \text { since } a b s(\Delta x)>a b s(\Delta y) \\
& X_{\text {increment }}=\frac{\Delta x}{s++p}=\frac{7}{7}=1 \\
& \text { Yinerement }=\frac{\Delta y}{s+p}=\frac{3}{7}=0.4
\end{aligned}
$$

The points of x and y are given below:

x	y	Round (y)
9	5.6	6
10	6	6
11	6.4	6
12	6.8	7

Qplot the line using $O D A$ algorithm having initial pout as $(5,7)$ and end point as $(10,15)$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(5,7) \\
& \left(x_{k}, y_{k}\right)=(10,15) \\
& \Delta x=x_{k}-x_{1}=10-5=5 \\
& \Delta y=y_{k}-y_{1}=15-7=8 \quad \text { step }=8 \\
& m=\frac{\Delta y}{\Delta x}=\frac{8}{5}>1 \\
& x_{\text {increment }}=\frac{\Delta x}{s+e p}=\frac{5}{8}=0.6 \\
& y_{\text {increment }}=\frac{\Delta y}{s+e p}=\frac{8}{8}=1
\end{aligned}
$$

(4) plot the lime using DDA algorithm having initial point as $(12,9)$ and end point as $(17,14)$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(12,9) \\
& \left(x_{k}, y_{k}\right)=(17,14) \\
& \Delta x=x_{k}-x_{1}=17-12=5 \\
& \Delta y=y_{1}-y_{1}=14-9=5 \\
& m=\frac{\Delta y}{\Delta x}=\frac{5}{5}=1 \quad \text { step }=5 \\
& x_{\text {increment }}=\frac{5}{5}=1 \\
& y_{\text {invement }}=\frac{5}{5}=1 \\
& \text { Suppore }\left(x_{1}, y_{1}\right)=(17,14) \\
& \quad\left(x_{k}, y_{1}\right)=(12,9) \\
& \Delta x=12-17=-5 \\
& \Delta y=9-14=-5 \\
& m=\frac{-5}{-5}=1 \\
& x_{\text {increment }}=\frac{5}{-5}=-1 \\
& \text { yinerement }=\frac{5}{-5}=-1
\end{aligned}
$$

x	y
12	9
13	10
14	11
15	12
16	13
17	14

x	y
17	14
16	13
15	12
14	11
13	10
12	9

Advantegers of DDA Algorithm
(1) DDA Algonithen is a faster method for calculating pixel position than the dient use of linie equations
(D) DDA algorithens eliminales multiplication

Disadvantage of DDA Algorithm
(1) DDA Algorithins does not produce a smooth line (1) Rounding function in DDA abgorithons need exter Compuration
procedure linDA $\left(x_{a}, y_{a}, x_{b}, y_{b}\right.$: integu);
var

$$
d x, d y, \text { steps, } k: \text { integer }
$$

$x_{\text {increment, }}, y$ increment, x, y : real;
begin

$$
\begin{aligned}
& d x:=x_{b}-x_{a} ; \\
& d y:=y_{b}-y_{a} ;
\end{aligned}
$$

$$
\text { If } \operatorname{abs}(d x)>a b s(d y) \text { then step }:=a b s(d x)
$$

else steps: $=\operatorname{abs}(d y)$;
Xincuement: $=d \times /$ steps;
Yincerment $:=d y /$ steps;

$$
x:=x_{a} ;
$$

$$
y:=y_{a} ;
$$

Set pixel (round (x), round $(y), 1)$;
for $k=1$ to steps do
begin
$x:=x+x$ increment;
$y:=y+y$ increment;
Set pixel (Round (x), Round $(y), 1)$;
end
end; (line DDA)
Bresenham's Line Algorithm
Bresenham's line algorithm is an accurate and efficient raster line generating Agorithem using only incremental integer Calculation
Consider the scan conversion process for lines with positive slope less than $1(m<1)$. pixel positions along a line path are then determined by sampling at unit x internals. stating from the left end point $\left(x_{0}, y_{0}\right)$ of a guin line
plot the pixel for each successive x posilion and whose scan-line y is closest to the lin path. considis the following figure.

Assume that initial pixel is plotted in $\left(x_{k}, y_{1}\right)$ coordinate and we need to decide the next pixel to be plotted is either $\left(x_{k+1}, y_{k}\right)$ or $\left(x_{k+1}, y_{k+1}\right)$
To determine y-value sampling is performed is the vertical line path. as d_{1} and d_{2}

The coordinate at the pixel positurs $x_{k}+1$ is calculated by

$$
\begin{aligned}
& \text { lated by } \\
& y=m\left(x_{k}+1\right)+b \rightarrow 0
\end{aligned}
$$

Then

$$
d_{1}=y-y_{k}
$$

sub (1) in d_{1}

$$
d_{1}=m\left(x_{k}+1\right)+b-y_{k}
$$

$$
\text { and } \begin{align*}
d_{2} & =\left(y_{k}+1\right)-y \\
& =y_{k}+1-m\left(x_{k}+1\right)-b \\
d_{1}-d_{2} & =m\left(x_{k}+1\right)+b-y_{k}-y_{k}-1+m\left(x_{k}+1\right)+b \\
d_{1}-d_{2} & =2 m\left(x_{k}+1\right)-2 y_{k}+2 b-1
\end{align*} \text { (2) }
$$

Multiply Δx on both of equation (2)

$$
\begin{equation*}
\Delta x\left(d_{1}-d_{2}\right)=\Delta x\left[2 m\left(x_{k}+1\right)-2 y_{k}+2 b-1\right] \tag{3}
\end{equation*}
$$

sub $m=\frac{\Delta y}{\Delta x}$ is equ (3)

$$
\begin{aligned}
& \Delta x\left(d_{1}-d_{2}\right)=\Delta x\left[2 \frac{\Delta y}{\Delta x}\left(x_{k}+1\right)-2 y_{k}+2 b-1\right] \\
&=2 \Delta y x_{k}+2 \Delta y-2 y_{k} \Delta x+\Delta x(2 b-1) \\
& P_{k}=2 \Delta y x_{k}+2 \Delta y-2 y_{k} \Delta x+\Delta x(2 b-1)
\end{aligned}
$$

$$
P_{k}=2 \Delta y \cdot x_{k}-2 \Delta x \cdot y_{k}+c
$$

where C is a constant $\&$ has value $2 \Delta y+\Delta x(2 b-1)$
To find P_{k+1} sub $x_{k}=x_{k+1}$ and $y_{k}=y_{k+1}$ in equ p_{k}

$$
p_{k+1}=2 \Delta y x_{k+1}+2 \Delta y-2 y_{k+1} \Delta x+\Delta x(2 b-1)
$$

$$
\begin{aligned}
P_{k+1}-P_{k}= & 2 \Delta y x_{k+1}-2 \Delta x y_{k+1}+2 \Delta y+\Delta x(2 b-1) \\
& -\left(2 \Delta y x_{k}-2 y_{k} \Delta x+2 \Delta y+\Delta x(2 b-1)\right. \\
= & 2 \Delta y x_{k+1}-2 \Delta x \cdot y_{k+1}+2 \Delta y+\Delta x(2 b-1) \\
& -2 \Delta y x_{k}+2 y_{k} \Delta x-2 \Delta y-\Delta x(2 b-1) \\
= & 2 \Delta y\left(x_{k+1}-x_{k}\right)-2 \Delta x\left(y_{k+1}-y_{k}\right)
\end{aligned}
$$

sub $x_{k+1}=x_{k}+1$ is the above equates

$$
\begin{aligned}
p_{k+1}-p_{k} & =2 \Delta y\left(x_{k}+1-x_{k}\right)-2 \Delta x\left(y_{k+1}-y_{k}\right) \\
& =2 \Delta y-2 \Delta x\left(y_{k+1}-y_{k}\right) \\
\therefore p_{k+1} & =p_{k}+2 \Delta y-2 \Delta x\left(y_{k+1}-y_{k}\right)
\end{aligned}
$$

Initial decision parameter p_{0} can he calculated from. p_{k} with initial point $\left(x_{k}, y_{k}\right)$

$$
p_{k}=2 \Delta y x_{k}+2 \Delta y-2 \Delta x y_{k}+\Delta x(2 b-1)
$$

sub $b=y-m x$

$$
\begin{aligned}
& \text { sub } \quad b=y-m x \\
& p_{k}= 2 \Delta y x_{k}+2 \Delta y-2 \Delta x y_{k}+\Delta x(2(y-m x)-1) \\
&= 2 \Delta y x_{k}+2 \Delta y-2 \Delta x y_{k}+2 \Delta x y-2 \Delta x m x-\Delta x \\
&
\end{aligned}
$$

sub $y=y_{k}, x=x_{k}$ and $m=\frac{\Delta y}{\Delta x}$

$$
\begin{aligned}
& \text { sub } y=y_{k}, x=x_{k} \\
& P_{k}=2 \Delta y x_{k}+2 \Delta y-2 \Delta x y_{k}+2 \Delta x y_{k}-2 \Delta x \frac{\Delta y}{\Delta x} x_{k}-\Delta x \\
&=2 \Delta y x_{k}+2 \Delta y-2 \Delta x y_{k}+2 \Delta x y_{k}-2 \Delta y_{k} x_{k}-\Delta x \\
&
\end{aligned}
$$

\therefore Initial decision peramatur $p_{0}=2 \Delta y-\Delta x$

If $p_{k}<0$ then the next coordinate is x_{k+1}, y_{k} so the P_{k+1} equation becomes

$$
\begin{gathered}
P_{k+1}=P_{k}+2 \Delta y-2 \Delta x\left(y_{k+1}-y_{k}\right) \\
1, \\
P_{k+1}=p_{k}+2 \Delta y \quad \begin{array}{l}
y_{k+1}-y_{k}=0 . \\
\text { so } 2 \Delta x\left(y_{k+1}-y_{k}\right)=0
\end{array}
\end{gathered}
$$

If $p_{k}>0$ then the neut coordinate is x_{k+1}, y_{k+1}

$$
P_{k+1}=P_{k}+2 \Delta y-2 \Delta x
$$

$$
y_{k+1}-y_{k}=1
$$

$$
\text { So } 2 \Delta x\left(y_{k+1}-y_{k}\right)=2 \Delta x
$$

Bresenhams' Line Drawing Alegaithm for $|m|<1$

1. Input the two line endpoints and store the left endpoint in $\left(x_{0}, y_{0}\right)$
2. Load $\left(x_{0}, y_{0}\right)$ into the frame buffer, that is, plot the fist point.
3. Calculate constants $\Delta x, \Delta y, 2 \Delta y$ and $2 \Delta y-2 \Delta x$ an obtain the starting value for the decision parameter as $p_{0}=2 \Delta y-\Delta x$
4. At each x_{k} along the line, starting at $k=0$, perform the following test: If $P_{k}<0$, the next point to plot is $\left(x_{k^{\prime}}+1, y_{k}\right)$ and.

$$
p_{k}+1=p_{k}+2 \Delta y
$$

otherwise the nut point to plot is $\left(x_{k}+1, y_{k}+1\right)$ and

$$
p_{k}+1=p_{k}+2 \Delta y-2 \Delta x
$$

5. Repent step $4 \Delta x$ times
procedure lime res ($x a, y_{a}, x_{b}, y_{b}$: integer);
Vas $d x, d y, x, y, x \in$ End, p : integer;
begin

$$
\begin{aligned}
& d x:=a b s\left(x_{a}-x_{b}\right) ; \\
& d y:=a b s\left(y_{a}-y_{b}\right) ; \\
& p:=2 * d y-d x ;
\end{aligned}
$$

\{deturnine which point to use as slit-, which as end $\}$
If $x_{a}>x_{b}$ then
begin

$$
\begin{aligned}
& x=x_{b} ; \\
& y=y_{b} ;
\end{aligned}
$$

X End $:=X a$
end $\left\{\right.$ If $\left.x_{a}>x_{b}\right\}$
else
begin

$$
\begin{aligned}
& x:=x a ; \\
& y:=y a ; \\
& x \text { End }=x b
\end{aligned}
$$

end;
Serpixal $[x, y, 1]$;
While $x<x$ End do
begin

$$
x:=x+1
$$

If $p<0$ then $p:=p+2 * d y$
else begin

$$
\begin{aligned}
& y:=y+1 \\
& p:=p+2 *(d y-d x)
\end{aligned}
$$

end;
Serpixal $(x, y, 1)$
end;
end; ;limBus?

Q Digitize the line with endpoint $(20,10)$ and $(30,18)$ using Bresenham's line drawing Algorithm. The line has a slope of 0.8 with $\Delta_{z}=10 \Delta y=8$

$$
\begin{aligned}
& x_{a}=20 \\
& x_{b}=30 \\
& x_{a}<x b
\end{aligned}
$$

So $x_{\text {start }}=20$

$$
x_{\text {End }}=30
$$

$$
\begin{aligned}
P_{0} & =2 \Delta y-\Delta x \\
& =2 \times 8-10=16-10=6
\end{aligned}
$$

$2 \Delta y=16$ and $2 \Delta y-2 \Delta x=16-20=-4$
Initial point to be plotted $\left(x_{0}, y_{0}=20,10\right)$

k	p_{k}	$\left(x_{k+1}, y_{k+1}\right)$	
0	6	$(21,11)$	$p_{k}>0$ So $p_{k+1}=p_{k+2} \Delta y-2 \Delta x=6 \cdot 4 \cdot 2$
1	2	$(22,12)$	$p_{k}>0 \quad p_{k+1}=2-4=-2$
2	-2	$(23,12)$	$p_{k}<0 p_{k+1}=p_{k+2} \Delta_{y}=-2+16=14$
3	14	$(24,13)$	$p_{k}>0 p_{k+1}=14-4=10$
4	10	$(25,14)$	$p_{k}>0 p_{k+1}=10-4=6$
5	6	$(26,15)$	$p_{k}>0 p_{k+1}=6-4=2$
6	2	$(27,16)$	$p_{k}>0 p_{k+1}=62-4=-2$
7	-2	$(28,16)$	$p_{k}<0 p_{k+1}=-2+16=14$
8	14	$(29,17)$	$p_{k}>0 p_{k+1}=14-4=10$
9	10	$(30,18)$	$p_{k}>0 \quad p_{k+1}=10-4=6$

The End given is $(30,18)$. So the different coordinates in the straight line is the above given $\left(x_{k+1} \cdot y_{k+1}\right)$ Coordinates

Q Draw a line between $(5,12)$ and $(15,20)$ using
Bresenhem's algorithen

$$
\begin{aligned}
& \Delta x=10(15-5)=10 \\
& \Delta y=20-12=8 \\
& 2 \Delta y=16 \\
& 2 \Delta y-2 \Delta x=16-20=-4 \\
& P_{6}=2 \Delta y-\Delta x \\
& =16-10=6 \\
& \left(x_{0}, y_{0}\right)=5,12 \\
& k \quad p_{k} \quad\left(x_{k+1}, y_{k+1}\right) \\
& \begin{array}{lll}
6 & (6,13) & p_{k}>0 \\
(7,14) & p_{k+1}=p_{k}+2 \Delta y-2 \Delta x \\
0 & p_{k}>0 p_{k+1}=2-4=-2
\end{array} \\
& 1 \quad 2 \quad(7,14) \quad(8,14) \quad p_{k}<0 \quad p_{k+1}=p_{k}+2 \Delta y=-2+16=14 \\
& \begin{array}{cccc}
2 & -2 & (8,14) & p_{k}>0 \\
3 & 14 & (9,15) & p_{x+1}=14-4=10
\end{array} \\
& 314 \quad p_{k}>0 \quad p_{k+1}=10-4=6 \\
& 4 \quad 10 \quad(10,16) \quad \dot{p}_{k>0} \quad p_{k+1}=6-4=2 \\
& \begin{array}{llll}
5 & 6 & 2 & (12,18)
\end{array} \quad p_{1}>0 \quad p_{k}+1=2-4=-2 \\
& \begin{array}{lccl}
6 & -2 & (13,18) & p_{k}<0 \\
7 & 14 & (14,19) & p_{k+1}=-2+16=19 \\
8 & p_{k}>0 & p_{k+1}=14-4=10
\end{array}
\end{aligned}
$$

The end point given is $(15,20)$
Circle generation Algorithm
A circle is defined as the set of points that are all at a given distance r from a center position (x_{c}, y_{c}). The distance relationship is expressed by the pythagorean
theorem in cartesian coordinates as

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

The above equation is used to calculate the positions of points on a circle by stepping x axis in unit intaing

The symmetry property of a circle can he used to generate the points in each of the quadrant. The symanetin property of the circle is given below.

All pixel positions around a civil can be calculatury only the points with en the sector from $x=0$ to $x=y$ Midpoint circle Algorithm
As in the raster line algorithm, sampling is done at int intervals and determine the closest pixel position to th specified curch path ar each step.
for a guin raduis ' r ' and screen center position $\left(x_{c}, y_{c}\right)$, fir calculate the pixel position around a circle path centered at the coordinate origin $(0,0)$ Then each calculated position (x, y) is moved to ${ }^{\circ}$ its proper seen position by adding x_{c} to x and y_{c} to

Along the circle section from $x=0$ to $x=y$ in the y. fri quadrant the slope of the curve varui from 0 to ${ }^{\circ}-1$. So we can take unit steps in the position x direction over this octant and use a decision parameter to determine which of the two possible Y^{\prime} ' position is closer to the circle path at each step. The circle function can be defined by

$$
f_{\text {civil }}(x, y)=x^{2}+y^{2}-r^{2}
$$

Any point (x, y) on the boundary of the cribble with redis ' r ' satisfies the equation fire $(x, y)=0$. If the point is in the interior of the circle, the circle function is negative. And if the point is outside the circle, the circle function is posilini. The relative position of any point (x, y) can lu e detumened by checking the sign of the circle function
fiche $(x, y) \begin{cases}<0, & \text { if }(x, y) \\ =0, & \text { if }(x, y) \text { is inside the circle boundary } \\ >0, & \text { if }\end{cases}$ >0, if $(x+y)$ is outside the ceil boundary

The following figure shows the midpoint between the two candidate pixels at sampling position $x_{k}+1$. Assume that pixel is plotted at the portion $\left(x_{k}, y_{k}\right)$ and need to detuminie the next pied position is either $\left(x_{k}+1, y_{k}\right)$ or $\left(x_{k}+1, y_{k}-1\right)$ by using decisions pasamile Decision parametu can be calculated using the midpoint of the pixels $\left(x_{k}+1, y_{k}\right)$ and $\left(x_{k}+1, y_{k}+1\right)$ is the circle functions facile $(x, y)=x^{2}+y^{2}-y^{2}$

$$
\begin{aligned}
& P_{k}=f_{\text {cid }}\left(x_{k}+1, y_{k}-\frac{1}{2}\right) \\
& P_{k}=\left(x_{k}+1\right)^{2}+\left(y_{k}-\frac{1}{2}\right)^{2}-r^{2} \\
& P_{k+1}=\left(x_{k+1}+1\right)^{2}+\left(y_{k+1}-\frac{1}{2}\right)^{2}-r^{2} \\
& P_{k+1}-P_{k}=\left(\begin{array}{c}
x_{k+1}+1 \\
\operatorname{sub} x_{k+1}=x_{k}+1
\end{array}+\left(y_{k+1}-\frac{1}{2}\right)^{2}-r^{2}-\left(x_{k}+1\right)^{2}-\left(y_{k}-\frac{1}{2}\right)^{2}+r^{2}\right. \\
& =\left(\left(x_{k}+1\right)+1\right)^{2}+\left(y_{k+1}-\frac{1}{2}\right)^{2}-\left(x_{k}+1\right)^{2}-\left(y_{k}-\frac{1}{2}\right)^{2} \\
& =\left(x_{k}+1\right)^{2}+2\left(x_{k}+1\right)+1+y_{k+1}^{2}-y_{k+1}+\frac{1}{4}-\left(x_{k}+1\right)^{2} \\
& -y_{k}^{2}+y_{k}-\frac{1}{4} \\
& -2\left(x_{k}+1\right)+\left(y_{k+1}^{2}-y^{2} k\right)-\left(y_{k+1}-y_{k}\right)+1 \\
& p_{k+1}-p_{k}=2\left(x_{k}+1\right)+\left(y_{k+1}^{2}-y_{k}^{2}\right)-\left(y_{k+1}-y_{k}\right)+1 \\
& \therefore p_{k+1}=p_{k}+2\left(x_{k}+1\right)+\left(y_{k+1}^{2}-y_{k}^{2}\right)-\left(y_{k+1}-y_{k}\right)+1
\end{aligned}
$$

The initial decision parameter is obtained by evaluating the circle function at the start portion $\left(x_{0}, y_{0}\right)=(0, r)$

$$
P_{k}=\left(x_{k}+1\right)^{2}+\left(y_{k}-\frac{1}{2}\right)^{2}-r^{2}
$$

sub ($0, r$) for $\left(x_{k}, y_{k}\right)$ in equation p_{k}

$$
\begin{aligned}
\therefore P_{0} & =(0+1)^{2}+\left(\gamma-\frac{1}{2}\right)^{2}-\gamma^{2} \\
& =1+\gamma^{2}-\gamma+\frac{1}{4}-\gamma^{2} \\
\therefore P_{0} & =\frac{5}{4}-\gamma \quad \text { or } \quad P_{0}=1-\gamma
\end{aligned}
$$

If $P_{k}<0$ then $y_{k+1}=y_{k} \therefore$ next coordinate becomes $\left(x_{k+1}, y_{k}\right)$. The p_{k+1} equation then becomes

$$
\begin{aligned}
& \left(x_{k+1}, y_{k}\right) \text {. The } p_{k+1} \text { equation } \\
& p_{k+1}=p_{k}+2\left(x_{k}+1\right)+\left(y_{k}^{2}-y_{k}^{2}\right)-\left(y_{k}-y_{k}\right)+1 \\
& \therefore p_{k+1}=p_{k}+2\left(x_{k}+1\right)+1 \text { if } p_{k}<0
\end{aligned}
$$

If $P_{k}>0$ then $y_{k+1}=y_{k}^{-1}$ next coordinate becomes

$$
\begin{aligned}
& \text { If } \begin{aligned}
\left(x_{k}+1\right. & \left., y_{k-1}\right) \cdot \text { The } p_{k+1} \text { equation } \\
p_{k+1} & =p_{k}+2\left(x_{k}+1\right)+\left(\left(y_{k}-1\right)^{2}-\right. \\
& =p_{k}+2\left(x_{k}+1\right)+y_{k}^{2}-2 y_{k}+1 \\
& =p_{k}+2\left(x_{k}+1\right)-2 y_{k}+1 \\
& =p_{k}+2\left(x_{k}+1\right)-2\left(y_{k}+1\right)+1
\end{aligned} \\
& p_{k+1}=p_{k}+2\left(x_{k}+1\right)+1-2 y_{k}+2 \\
& p_{k+1}
\end{aligned}
$$

Midpoint Circle Algorithm

1. Input radius r and circle center $\left(x_{c}, y_{c}\right)$ and obtain the first point on the circumference of a circle centered on the origins as $\left(x_{0}, y_{0}\right)=(0, r)$
2. Calculate the initial value of the deciesuis parameter. as $P_{0}=\frac{5}{4}-r$
3. At each x_{k} position, stating at $k=0$, perform the following test : If $p_{k}<0$, the next point along the chicle centered on $(0,0)$ is $\left(x_{k}+1, y_{k}\right)$ and

$$
p_{k+1}=p_{k}+2 x_{k+1}+1
$$

Otherwise the next point along the chicle is $\left(x_{k}+1, y_{k}-1\right)$ and $p_{k+1}=p_{k}+2 x_{k+1}+1-2 y_{k+1}$
where $2 x_{k+1}=2 x_{k}+2$ and $2 y_{k+1}=2 y_{k}-2$.
4. Determine symmetry points in the other seven octants 5. Mon each calculated pixel. position (x, y) onto the circular path centered on (x_{c}, y_{c}) and plot the Coordinate values:

$$
x=x+x_{c} ; y=y+y_{c}
$$

6. Repeat step 3 through 5 until $x \geq y$. procedure cicchorid point (xcenter, y center, raduis: integer); var

$$
P, x, y: \text { integer; }
$$

procedures plot points;
begin
serpixel (x center $+x, y$ center $+y, 1$);
Ser pixel (x center $-x, y$ center $+y, 1$);
Ser pixel $\left(x\right.$ center $\left.+x, \quad Y_{\text {center }}-y, 1\right)$;

Serpirel ($x_{\text {cuntue }}-x, x_{\text {center }}-y, 1$);
Ser pixal (x centur $+y, V_{\text {centur }}+x, 1$);
set pixel (x center $-y, Y$ Yentur $+x, 1$);
Ser pixul ($x_{\text {cuntur }}+y, Y_{\text {cuntar }}-x, 1$);
Ser pirel (xcenter $-y$, Ycentu $-x, 1$)
end; plor points
begin

$$
x:=0 ;
$$

$y:=$ raduis;
plorpointo;
$p=1$-raduis;
while $x<y$ do
begin
If $p<0$ then

$$
x:=x+1
$$

else
begin

$$
x:=x+1 ;
$$

$$
y:=y-1
$$

end;
If $p<0$ then

$$
p:=p+2 * x+1
$$

else

$$
p:=p+2 \times(x-y)+1
$$

plor points
end;
end; \{crele rerd point \}
Q Criven a ciele with radies $r=10$, determine the positions along the circle ortant in the firit quedrant from $x=0$ to $x=y$ by using midpoint cuicle algoithom.

The initial value of the decision pacanater is

$$
p_{0}=1-r=-9
$$

Initial point is $\left(x_{0}, y_{0}\right)=(0,10)$
Succession decision parameter values and positions along the circle path are calculated as

since $x \geq y$ ie $7=7$ so we can stop finding coordinates. The different points on the Quadrant an givmbelow

Coordinate	$Q_{2}(-x, y)$
$\therefore Q_{1}(x, y)$	$(0,8)$
$(0,8)$	$(-1,10)$
$(1,10)$	$(-2,10)$
$(2,10)$	$(-3,10)$
$(3,10)$	$(-4,9)$
$(4,9)$	$(-5,9)$
$(5,9)$	$(-6,8)$
$(6,8)$	$(-7,7)$
$(7,7)$	$(-8,6)$
$(8,6)$	$(-9,5)$
$(9,5)$	$(-9,4)$
$(9,4)$	$(-10,3)$
(1013)	$(-10,2)$
$(10,2)$	$(-10,1)$
$(0,10)$	$(-8,0)$
$(8,0)$	

$Q_{3}(-x,-y)$	$Q_{4}(x,-y)$
$(0,-8)$	$(0,-8)$
$(-1,-10)$	$(1,-10)$
$(-2,-10)$	$(2,-10)$
$(-3,-10)$	$(3,-10)$
$(-4,-9)$	$(4,-9)$
$(-5,-9)$	$(5,-9)$
$(-6,-8)$	$(6,-1)$
$(-7,-7)$	$(7,-7)$
$(-8,-6)$	$(8,-6)$
$(-9,-5)$	$(9,-5)$
$(-9,-4)$	$(9,-4)$
$(-10,-3)$	$(10,-3)$
$(-10,-2)$	$(10,-2)$
$(10,-1)$	$(10,-1)$
$(-8,0)$	$(8,10)$

Q Detumine the position of the circle is the fris quabsail With radius $=8$ and the initial points are $(0,8)$ is

$$
p_{0}=1-r=1-8=-7
$$

Initial point is $\left(x_{0}, y_{0}\right)=(0,8)$

Q Determine the position of the circle in the fuit quadrant with raduis 9 cm and the center of the crick is (2,2) by using midpoint Algm.
radius, $r=9 \mathrm{~cm}$

$$
\begin{array}{ll}
x_{c}=2, & y_{c}=2 \\
p_{0}=1-r & ; 1-9=-8<0
\end{array}
$$

Coordinates (x, y) can be calculated as $x=x+x_{c}, y=y+y_{c}$

$Q_{1}(x, y)$	$Q_{2}(-x, y)$	$Q_{3}(-x,-y)$	$Q_{9}(x,-y)$
$(2,4)$	$(-2,11)$	$(-2,-11)$	$(2,-11)$
$(3,11)$	$(-3,11)$	$(-3,-1)$	$(3,-11)$
$(4,11)$	$(-4,11)$	$(-4,-11)$	$(4,-11)$
$(5,10)$	$(-5,10)$	$(-5,-10)$	$(5,-10)$
$(6,10)$	$(-6,10)$	$(-6,-10)$	$(6,-10)$
$(7,9)$	$(-7,9)$	$(-7,-9)$	$(7,-9)$
$(8,9)$	$(-8,9)$	$(-8,-9)$	$(8,-9)$
$(9,8)$	$(-9,8)$	$(-9,-8)$	$(9,-8)$
$(9,8)$	$(-9,8)$	$(-9,-8)$	$(9,-8)$
$(9,7)$	$(-9,7)$	$(-9,-7)$	$(9,-7)$
$(0,6)$	$(-10,1)$	$(-10,-6)$	$(10,-6)$
$(10,5)$	$(-10,5)$	$(-10,-5)$	$(10,-5)$
$(11,4)$	$(-11,4)$	$(-11,-4)$	$(11,-4)$
$(11,3)$	$(-1,1,3)$	$(-11,-3)$	$(11,-3)$
$(11,2)$	$(-11,2)$	$(-11,-2)$	$(11,-2)$

Bresenham's circle Drawing Algorithm
Bresenhams' method of doauring the circle is an efficient method because it avoids the square root calculation of the mid point circle drawing by adopting only integer operation.
The hresenham's circle drawing algonithem consider the eight way symmetry. of the cade $9+1$ plots $1 / 8$ pout of the circle from 90° to 45°. As the chicle is drown from 90° to 45°, the x-moves in tue ducilion and y. moves is -ve direction
The new points closest to the true circle can le formed by applying two options
a) Increment in positive x dirielion by one unit os
b) Increment in poictive x directive and negative y dineric both by one Unit
If the current point with coordinates (x_{n}, y_{n}) then the next point can be either $\left(x_{n+1}, y_{n}\right)$ or $\left(x_{n+1}, y_{n-1}\right)$.

The distance of pixel from A and B from the origin $(0,0)$ are given by

$$
\begin{aligned}
& d_{A}=\sqrt{\left(x_{n+1}-0\right)^{2}+\left(y_{n}-0\right)^{2}} \\
& \dot{u} d_{A}=\sqrt{x_{n+1}^{2}+y_{n}^{2}} \\
& d_{B}=\sqrt{x_{n+1}^{2}+y_{n-1}^{2}}
\end{aligned}
$$

The distance of pixels A and B from the tree cecile whose radium ' r ' ar given as

$$
\delta_{A}=d_{A}-r \text { and } \delta_{B}=d_{B}-r
$$

To avoid square root in derivation of deusion variable we use $\delta_{A}=d_{A}^{2}-r^{2}$ and $\delta_{B}=d_{B}^{2}-r^{2}$
δ_{A} is always positive and δ_{B} is alcoays negative because distance from the origin to A is always greater than the radius of the circle and the distance from the origin to B is always s less than the actual radius of the circle.
\therefore Decision parander $p_{K}=\delta_{A}+\delta_{B}$
Let the point le $\left(x_{i+1}, y_{i}\right)$ and $\left(x_{i+1}, y_{i-1}\right)$.
Then

$$
\begin{aligned}
p_{k}= & x_{i+1}^{2}+y_{i}^{2}-\gamma^{2}+x_{i+1}^{2}+y_{i-1}^{2}-\gamma^{2} \\
& \operatorname{sub}^{2} x_{i+1}^{2} x_{i}+1 \text { and } y_{i-1}=y_{i}^{-1}-1 \\
= & \left(x_{i}+1\right)^{2}+y_{i}^{2}+\left(x_{i}+1\right)^{2}+\left(y_{i}^{-1}\right)^{2}-2 \gamma^{2} \\
p_{12}= & 2\left(x_{i}+1\right)^{2}+y_{i}^{2}+\left(y_{i}-1\right)^{2}-2 \gamma^{2}
\end{aligned}
$$

$$
\begin{aligned}
P_{k+1}= & 2\left(x_{i+1}+1\right)^{2}+y_{i+1}^{2}+\left(y_{i+1}-1\right)^{2}-2 r^{2} \\
= & 2\left(x_{i}+1+1\right)^{2}+y_{i+1}^{2}+\left(y_{i+1}-1\right)^{2}-2 r^{2} \\
= & 2\left(x_{i}+2\right)^{2}+y_{i+1}^{2}+\left(y_{i+1}^{-1}\right)^{2}-2 r^{2} \\
P_{k+1}-P_{k}= & 2\left(x_{i}+2\right)^{2}+y_{i+1}^{2}+y_{i+1}^{2}-2 y_{i+1}+1-2 r^{2} \\
& -2\left(x_{i}+1\right)^{2}-y_{i}^{2}-y_{i}^{2}+2 y_{i}-1+2 r^{2} \\
= & 2\left(x_{i}^{2}+4 x_{i}+4\right)+y_{i+1}^{2}+y_{i+1}^{2}-2 y_{i+1}+1-2 r^{2} \\
& -2\left(x_{i}^{2}+2 x_{i}+1\right)-y_{i}^{2}-y_{i}^{2}+2 y_{i}-1+2 r^{2} \\
= & 2 x_{i}^{2}+8 x_{i}+8+2 y_{i+1}^{2}-2 y_{i+1}+1-2 r^{2} \\
& -2 x_{i}^{2}-4 x_{i}-2-2 y_{i}^{2}+2 y_{i}-1+2 r^{2} \\
P_{k+1}-P_{k}= & 4 x_{i}+6+2 y_{i+1}^{2}-2 y_{i+1}-2 y_{i}^{2}-2 y_{i} . \\
P_{k+1}= & p_{k}+4 x_{i}+2 y_{i+1}^{2}-2 y_{i+1}-2 y_{i}^{2}+2 y_{i}+6
\end{aligned}
$$

If $p_{k}<0$ then x_{i+1}, y_{i} ie next $y_{i+1}=y_{i}$

$$
\begin{aligned}
& \text { If } p_{k}<0 \text { then } \\
& \therefore p_{k+1}=p_{k}+4 x_{i}+2 y_{i}^{2}-2 y_{i}-2 y_{i}^{2}+2 y_{i}+6 \\
& p_{k+1}=p_{k}+4 x_{i}+6 \quad \text { if } p_{k}<0
\end{aligned}
$$

If $p_{K}>0$ then x_{i+1}, y_{i-1} is next $y_{i+1}=y_{i-1}$

$$
\begin{aligned}
& \text { If } p_{k}>0 \\
& \begin{aligned}
p_{k+1} & =p_{k}+4 x_{i}+2\left(y_{i-1}\right)^{2}-2 y_{i-1}-2 y_{i}^{2}+2 y_{i}+6 \\
& \text { sub } y_{i-1}=y_{i}-1 \\
& =p_{k}+4 x_{i}+2\left(y_{i}-1\right)^{2}-2\left(y_{i}-1\right)-2 y_{i}^{2}+2 y_{i}+6
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =p_{k}+4 x_{i}+2 y_{i}^{2}-4 y_{i}+2-2 y_{i}+2-2 y_{i}^{2}+2 y_{i+1} \\
& =p_{k}+4 x_{i}-4 y_{i}+10 \\
\therefore p_{k+1} & =p_{k}+4\left(x_{i}-y_{i}\right)+10 \quad \text { if } \quad p_{k}>0
\end{aligned}
$$

Initial decision paramela p_{0} can le calculated from the initial point $\left(x_{0}, y_{0}\right)=(0, r)$

$$
\dot{u} p_{k}=2\left(x_{i}+1\right)^{2}+y_{i}^{2}+\left(y_{i-1}\right)^{2}-2 r^{2}
$$

sub $(0, r)$ for $x \& y$

$$
\begin{aligned}
& =2(0+1)^{2}+r^{2}+(r-1)^{2}-2 r^{2} \\
& =2+r^{2}+r^{2}-2 r+1-2 r^{2} \\
& =3-2 r \\
\therefore p_{0} & =3-2 r
\end{aligned}
$$

Algonithen for Bresenham's circle drawing
Step 1: Read the radius ' r ' of the circle and center (x_{c}, y_{y})
step 2: Calculate the initial value of the decis ios parameter as $p_{0}=3-2 r$ and initial point as

$$
\left(x_{0}, y_{0}\right)=(0, r) \text {. }
$$

Step 3 : At each x_{k} position starting at $k=0$. perform the following test.
If $p_{k}<0$ then nevi point along the circle centred on $(0,0)$ is $\left(x_{k+1}, y_{k}\right)$ and

$$
p_{k+1}=p_{k}+4 x_{k}+6
$$

otherwin the next point on the cricle is $\left(x_{k+1}, y_{k}-1\right)$ and $p_{k+1}=p_{k}+4\left(x_{k}-y_{k}\right)+10$
Step 4: Determine symmeley points of 0 the seven octant.
Step 5: Mow each calculated pixal position (x, y) onto the ciscular path centued on (x_{0}, y_{c}) and plor the coordinate values.

$$
x=x+x_{c}, \quad y=y+y c
$$

step 6: Repeat step 3 to 5 until $x \geq y$.
Procedue Bresenhamícuich $\{\times$ centus, ycentur, reduis: intega); Vas
p, x, y : integen;
procedum plorpoñls;
begin
Serpixal (xcenter $+x, y_{\text {contes }}+y, 1$);
Serpixel (x center $-x, y$ center $+y, 1$);
Ser pirel (x centu $+x, y$ centex $-y, 1$);
ser poxel (x conter $-x, y$ conter $-y, 1$);
Ser pixal $(x$ centur $+y$, yonter $+x, 1)$;
ser pixal $(x$ centur $-y, y$ contes $+x, 1)$;
Set pixel (x centu $+y$, yontur $-x, 1$);
set pixel (x centes $-y$, ycenter $-x, 1$);
end; plor points
begin

$$
x:=0 ;
$$

$y:=$ radui,
plorpocils;

$$
p:=3-2 r
$$

while $x<y$ do
begin
If $p<0$ then
$x:=x+1$
else
begin

$$
x=x+1
$$

$$
y=y-1
$$

end;
If $p<0$ then

$$
p=p+4 x+6
$$

else

$$
p=p+4(x-y)+10
$$

- plot points
end;
end; \{Bresenhams wish \} ~
Q Determine the positions on the circle having $r=8$ and having centre position as $\left(x_{c}, y_{c}\right)=(30,40)$ by using Bresenham's drawing Algorithm.
Initial point $\left(x_{0}, y_{0}\right)=(0,8)$

$$
\begin{array}{lll}
p_{0}= & 3-2 y= & 3-16=-13 \\
x & y & p \\
0 & 8 & -13 \\
1 & 8 & p=p_{k}+4 x+6=-13+4+6=-3<0 \\
2 & 8 & p=p_{k}+4 x+6=-3+8+6=11>0 \\
3 & 7 & p=p_{k}+4(x-y)+10=11+4(-4)+10=11-16+10=5 \times 0 \\
4 & 6 & p=p_{k}+4(x-y)+10=5+4(-2)+10=7>0
\end{array}
$$

$$
\begin{aligned}
& (x, y)=\left(x+x_{c}\right),\left(y+y_{c}\right) \\
& x_{c}=30, y_{c}=40 \\
& \frac{(x, y)}{(30,48)} \\
& (31,48) \\
& (32,48) \\
& (33,47) \\
& (34,46) \\
& (35,45)
\end{aligned}
$$

Q Determine the positions on the circle having radius $R=10$ and having centre as origin $(0,0)$ by using Bresenham' drawing Algorithms.

$\left(x_{0}, y_{0}\right)=(0,10)$	$p_{0}=3-2 \times 10=-17$	
x	y	p
0	10	$p_{0}=3-20=-17<0$
1	10	$p=p+4 x+6=-17+4+6=-7<0$
2	10	$p=p+4 x+6=-7+4 \times 2+6=7>6$
3	9	$p=p+4(x-y)+10=7+4(-6)+10=-7<0$
4	9	$p=p+4 x+6=-7+16+6=15>0$
5	8	$p=15+4(-3)+10=13>0$
6	7	$p=13+4(-1)+10=-19>0$

Filled Area primitives
A standard output primitini in general graphres package is a solid color on patterned polygon area.
Then an two basic approaches to fill the area on the raster system.
i) One way to fill an are is to determine the ocrulap interned, for sean lines that cross the are.
ii) Another method for area filling is to. slant from a given interior position and paint outward from this point untie te a specified boundary condition is encountered.
There are mainly 3 kinds of polygon filling algorithm.
i) Scan line polygon fill Algorithm
ii) Boundary fill Algorithm
ii) flood Fill Algorithm.

Scan line polygon Fill Algorithm
The following figurer illustrates the scan-line peocedue fore solid filling of polygon ques. For each scan line crossing a polygon, the ares fill algorithm locates the insencties points of the scan line with the polygon edges. These intersection. points are sorted from left to light and the corresponding frame-buffer positions between each intersection pair are set to the specified fill color.

In the above examples, force pixel inteusecturs position with the polygon boundauis define the two stretches of interior pixels from $x=10$ tide $x=14$ \& $x=18^{1}$ - fo $x=24$
Special cases in scan line intersection with polygon:-
Case 1: Scan line pas through the vertices
A scan line passing through a vertex intersects two polygon edges at that position.

In the above given figure the scan line y is passing through the vertex. ' A '. which intersect two edges ' $A B^{\prime}$ ' and ' $A F$ '. In this case the intersection of vertex A with scan line y will le considered as two and count the single intersection point as two.

Case 2: Scan line pass through the vertex whose edges are both opposite to each other
A scan line passing through the vertex who edges are lying opposite to that vester. This can lequiu specical processing. The following figure show the case 2 intersection of vertex with scan line

The scan line ' y ' intersects the vertex ' F ' which intersects two edges' ' $C F$ ' and ' $E F$ '. Both of the edges are opposite to the vertex f.
These kind of vertex can be identified by tracing the polygon boundary eithis in clockwise or anticlockuire duictions. and obscene the relative change in the y-coordinate value is vertex as we move from one edge to the next.
Difference between the intersection of the scanline y and y^{\prime} with the vertex is that.

For scantine y, the edges of the intusection vertex \bar{x} ' D ' are on the same side of the scanting, ie it is above the scanlenis
For scanting y^{\prime}, the edges intersecting at the verlaine : ' F ' are on either sides of the vertex inturentuin $w i$ th scanline.
vertex counting in a scanline:-
$i)$ Traverse along the polygon boundary clockwien on anticlockurii
ii) observe the relative change in y-value of the edges on either side of the vertex (as we mom from one edge 40 another).
ii) check the condilurs.
a) If the y-coordinate value of the two edges in the intersecting vertex are monotonically incurs os decrease then count the inturected vertex as a single intersection point for the scan line passing through it.

Count ' B ' as one.
b) flee if the y-coordinate value of tho shoved vertex represents the local minimum os local maximum on the polygon boundary. Increment the inteesectorn count. ie count the infurselion point as two.
 count, the intersection point ' c ' as two

Implementation of above cases.
To resolve the question whether we should count a Vertex as one intersection or two?
we have to shorten some polygon edges to split then vertices that should lu counted as one intersection. The nonhorizantal edges around the polygon boundary can le process either clock wire or anticlockwise. and detumuie whether the edge and the next horizontal edge is monotonically increase or decrease. the y-coordinate value. If the y-value is increasing on decreasing then the lower edge can be shortened to ensue that only on intersection point is generated for the scan line goring through the common vertex joining two edges. The following figure illustrates shortening of edge. When . when the endpoint y coordinate of the two edges ar increasing, the y value of the upper endpoint for the curvet edge is clecreased by 1 .
(8) when the endpoint. Y value ar monotonically decreasing, we decrease the y-coordinate of the upper endpoint of the edge which follows the current edge.

y coordinate of the upper endpoint of current edge i is dureared by 1

y coordinate of the upper endpoint of the neut edge is deceraned by 1 ',

Two important feature of scantine based padygon filling Alga
(2) Scanline coherence - values do not change much from one scantine to the next- the coverage of a face om sconline typically differs from the previous one
(Edge coherence - edges intersected by scanline ' i ' are typically intusuted by scanbine $i+1$.
following figurer shows two successive scan line crossing a lye edge of a polygon. The slope of this polygon boundary line can he expressed in terms of the sian line intersection coordinates

slope $m=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}}$
The chang is y coordinate between the two scan line is $\quad y_{k+1}-y_{k}=1$

The x-intersection value x_{k+1} on the upper scan lime can be detumined from the x-intersection value \dot{x}_{k} on the preceding scan line as. (By DDA Algm)

$$
x_{k+1}=x_{k}+\frac{1}{m}
$$

Along the edge with slope m, the intersection x_{k} Value for the scan line k above the initial sean lime can be calculated as

$$
x_{k}=x_{0}+\frac{k}{m}
$$

Thus the incremental calculation of x intercepts along an edge for sucessine scan live can he expressed as $\quad x_{k+1}=x_{k}+\frac{\Delta x}{\Delta y} \quad: m=\frac{\Delta y}{\Delta x}$.

Inside-Outside Test
Area filling algorithms need to identify the interior Region of the objects.
In elementary geometry the polygon is usually defined as no self intusection. The edges of the standand-podygon are joined only at the vertices, on the edges have no common endpoints in the plans.
It is difficult to find the interior region of the polygon whose edges one intessulios intersecting is the plane. Inonder to find the interior and exterior legumin of such shapes graphics package normally use two method.
i) odd-even rule
ii) Non-zero Winding Number
odd-even rule (odd parity)
In this method a lune is drawn prom any position ' P ' to a distant point outside the coordinate extents of the object and counting the number of edges crossing along the line. If the numlue of polygon edges crossed by this line is odd, then p is an interior point otherivis If the number of polygon edges crossed by the lime is even then P is an exterior point.

NB:-
To obtain an accurate edge count, we must be sue that the line path we chook does nor inturent any polygon vertices.

The following figures shows the interior and exterior regions obtained from the odd-even rule for a self-intusecting ser of edges.

fig: odd even Raul.
Nonzero Winding Number Rule
This method counts the number of tamis the polygon. edges wind around a particular point in the counturclockiois direction. This cound is called the winding number. The interior points of a two-dimensianal object aus defined to le those that have a nonzero Value for the Winding number.
The non zero winding number hel is applied to the paragon by inisializing. the winding number to 0 and a line is drawn from any position ' p ' to a distant point beyond the coordinate expents to the orbit. The drawn line must nor pass through any vertices The no: of edges that cion the drawn line is counted as use move along the line from position ' p ' to a
distant point beyond the coordinate extents of the orgeat The winding number of each edge is taken depend on the direction of the edges and the value of the diction is as follows.
i) An edges cross the line from right to left is 1
ii) An edge cross the line from leet to sight is -1
(ii) An edge cross the line from top to bottom is 1
iv An edge clos the line from bottom to top is -1
The final value of the winding number, after all edge closings haw been cocinted, determines the relaturie position of ' P '. 'f the winding number is nonzero ' P ' is defined to be an interior point, otheruri ' P ' is taken to he the exterior point The following figure shows the interior and exterior region defined by the nonzero winding for a self-intusecting set of edges.

$$
\begin{aligned}
P= & A B+C D \\
& 1-1=0 \\
Q= & B C+F G \\
& -1-1=-2!
\end{aligned}
$$

Boundary Fill Algorithm
Boundary Fill Algorithm fill the interior Region of the boundary with one color by comparing the color is the boundary area.
This method start at a point inside a region and paint the interiors outward toward the boundary. If the boundaing is specified in a single color, the fill algorithm proceeds outward pixal by pixel until the boundary colon is encountered. This method is called boundary fill algorithm and this method is useful in painting packages, where the interior points ane eaicly selected.
Boundary fill Algorithm uses two methods for filling the neigh bowing pixel with color.
i) 4-connected
ii) 8-connected

In the 4 -connected method, 4 neighlowing points ane tested. These ane the pixel position that an right, by, above and below the current pixel.

8-Connected Method is used to fill more complex figures. This method includes the four diagonal pixel in the set of neighboring position to lee tested.

fig: Example ceto s boundaui for a boundary -fill prada.
A boundary fill procedure accepts as input the coordinati of an interior point (x, y), a fill color, and a boundary color. starting from (x, y) the procedure test' neighlowing pristions to determine whether they ane of the bounden colon. If the neighlowing pixels tested are nor fill with the boundary color then they are painted with the fill colon and again their neighblowigs are tested using the algsithm. This process continues until all pixel up to the boundary color for the area have been tested.
procedure boundayfill $4(x, y, F i l$, boundary: integer); var
current : integer;
begin current $=$ getpixel (x, y);
If (convent $\langle>$ boundary) and (current $\langle>$ fill) then begin

$$
\begin{aligned}
& \text { begun } \\
& \text { setpixal }(x, y \cdot f i l l) \text {; }
\end{aligned}
$$

boundary fill $4(x+1, y, f i l l$, boundary);
boundary fill 4 ($x-1, y, f i l$, boundary);
boundary fill $4(x, y+1$, fill, boundary);
boundary fill 4 ($x, y-1$, fill, boundary)
end
end; \{boundayfill $\}$
Flood Fill Algorithm
Flood gill Algorithm is used to fill (recolor) an area That is nor defined within a single color boundary. such area can he paint by replacing a speufial interior color instead of searching for a boundary color value.
In flood fill Algorithm we stat from a specified interior point (x, y) and reassign all pixel value that are currently set to a given interior color with the desired fill color.
If the area we want to paint has more than one interwi color, first reassign pixel values so that all interior points have the same cole.
4-connected or 8 -connected approach can he used to step the pixel postunis until all the interior points have been painted.
Following procedure Flood fills a 4 -Connected region) Rofursuily, starting from the input position.
procedure flood Fill 4 (x, y, fill color, old colon: integer); begin

If gerpixal $(x, y)=$ oldcotar then begin
serpixal $(x, y$, fillcotox);
flood fill $4(x+1, y$, fill colon, oldcoto1);
flood fill $4(x-1, y$, fill color, old colo $x)$;
flood fill 4 ($x, y+1$, fill color, old colvx); $f \operatorname{lood}$ fill $4(x, y-1$, fill color, old color);
end
end; \{flood fill\}

MOD -III
Two Dimensional Transformations
Changes in orientation, size and shape are accomplished with geometric transpronation that alter the coordinate descriptions of the object. The basic geomatie ternformation are
i) Translation
ii) Rotation
iii) Scaling
other form of τ ranfformation applied to the Otgels are
i) Reflection
ii) Shear

Basie Transformations
These transformation are used to reposiluin and resize two dimensional object.
Translation
A translation is applied to an object by repositioning it along a straight-line path from one coordinate location to another
A 2-0 point is translate by adding translation distance, t_{x} and t_{y} to the original coordinate position (x, y) to move the point to a new position $\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{align*}
& x^{\prime}=x+t x \tag{1}\\
& y^{\prime}=y+t y
\end{align*}
$$

The translation distance pace $\left(t_{x}, t_{y}\right)$ is called a-banslation vector on shift vector

The above Translation equation can be expressed as a single matrix equation by using column vectors to repessest coordinate positions and theresanslation vecta

$$
P^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x \\
y
\end{array}\right]+\underset{(T)}{\left[\begin{array}{l}
t x \\
t y
\end{array}\right]}
$$

(P)

The 2-0 translation equation in the matrix can be is the form $P^{\prime}=P+T$
The translation matrix equations can lu expected is teems of coordinate row vectors instead of column vectors The column vector can lu e represented as $p=\left[\begin{array}{ll}x & y\end{array}\right]$ and $\tau=\left[t x, t_{y}\right] \quad$ ie $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]=\left[\begin{array}{ll}x & y\end{array}\right]+\left[\begin{array}{ll}t x & t y\end{array}\right]$
Translation is a rigid-body transformation that moves objectwithout deformation. ie even point on the object is temataled by the same amount.

- A straight line segment is translated by applying the transformation equation (2) to each of the line endpoints * and redraw the line between the new endpoint positions.
* polygons are translated by adding the translation vector to the coordinate positions of each vertex and regenerating the polygon using the new set of vertex coordinates and the current attiblute settings
Eg:- Consider the triangle polygon with the the er vertex $(9,2),(15,5)$ and $(20,2)$ and the translation vector be the $(-5.50,3.75)$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(9,2) \\
& s_{x}=-5.50 \\
& \left(x_{2}, y_{3}\right)=(15,5) \\
& S y=3.75 \\
& \left(x_{3}, y_{3}\right)=(20,2) \\
& x_{1}^{\prime}=x_{1}+3 x=9+-5.50=3.5 \\
& y_{1}^{\prime}=y_{1}+s y=2+3.75=5.75 \\
& \left(x_{1}^{\prime}, y_{1}^{\prime}\right)=(3.5,5.75) \\
& \begin{array}{l}
x_{2}^{\prime}=x_{2}+5 x=15+-5.50=9.5 \\
y_{2}^{\prime}=y_{2}+5 y=5+3.75=8.75
\end{array} \quad\left(x_{2}^{\prime}, y_{2}^{\prime}\right)=(9.5,8.75) \\
& x_{3}{ }^{\prime}=x_{3}+3 x=20+-5.50=14.5 \\
& y_{3}^{\prime}=y_{3}+s y=2+3.75=5.75 / x_{3}^{\prime}, y_{3}^{\prime}=(14.5,5.75)
\end{aligned}
$$

Rotation
A 2-D rotation is applied to an object by repositioning it along a circts circular path in the $x y$ plane. Rotation is generated by specify a rotation angle θ and The position, $\left(x_{r}, y_{r}\right)$ of the rotation point (erpivot point) about which the object is to be rotated positive values for the rotation angle defines. Countuculakis
rotation about the pivot point and the negative values rotate the object is the clockwise direction.

fig: Rotation of an object though angle θ abreact the pier point
i) Rotation of a point at the coordinate origins:-

The angular and coordinate relationship of the original point and the transformed point position are shown is the following figure.

In the above figure ' r ' is the radius which is constant distant of the point from the origin and the ' ϕ ' is the original angular position of the point from the horizontal x-axis. and θ is the rotation angle. Using the trigonometric identities the original coordinates of the point can be expressed as

$$
\begin{align*}
& x=r \cos \phi \tag{1}\\
& y=r \sin \phi
\end{align*}
$$

The transformed coordinates can be expressed interns of angle θ and ϕ as

$$
\begin{align*}
& x^{\prime}=r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta \tag{2}\\
& y^{\prime}=r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta
\end{align*}
$$

Substituting (1) in (2). The transformation equations for rotating a point at position (x, y) through an angle θ

$$
\begin{aligned}
& \text { at origin: } \\
& x^{\prime}=x \cos \theta-y \sin \theta \quad \text { ie } R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin ^{\prime} \theta & \cos \theta
\end{array}\right], x \sin \theta+y \cos \theta
\end{aligned}
$$ about the origin:

The rotation colum matui can le written as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The rotation equation can lu gavin as

$$
P^{\prime}=R \cdot P
$$

when the coordinate positions are represented as row vectors instead of column vectors, the matrix product in rotation is transposed so that the transfumed row coordinate vector $\left[x^{\prime}, y^{\prime}\right]$ is calculated as

$$
\begin{aligned}
P^{\prime \top} & =(R \cdot P)^{\top} \\
& =P^{\top} \cdot R^{\top}
\end{aligned}
$$

where $p^{\top}=[x, y]$ and the Transpose R^{\top} of matrix is obtained by interchanging lows \& columns. For a rotation matrix

Transpose is obtained by simply changing the sign of sine tams

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

i) Rotation of a point at the pivot position:-

Rotation of a point about an pivot position is illustrated in the following figures.

Using trigonometric relationship, the transformation equation for rotators of a point alrout any speufid rotation posiloris $\left(x_{r}, y_{r}\right)$ is guin by

$$
\begin{aligned}
& \text { yr) is guin by } \\
& x^{\prime}=x_{r}+\left(x-x_{r}\right) \cos \theta-\left(y-y_{r}\right) \sin \theta \\
& y^{\prime}=y_{r}+\left(x-x_{r}\right) \sin \theta+\left(y-y_{r}\right) \cos \theta
\end{aligned}
$$

iii) Rotation of a point in clockwise deviation:-

The angular and the coordinate relationship of the original point and the transformed point position are shown in the following figure

old angle $=\phi$ new angle of $\rho \rightarrow \rho^{\prime}=(\phi-\theta)$

$$
\begin{array}{ll}
x^{\prime}=r \cos (\phi-\theta) & \because \cos \phi-\theta=\frac{x^{\prime}}{r} \\
y^{\prime}=r \sin (\phi-\theta) & \because \sin \phi-\theta=\frac{y^{\prime}}{r} \\
x=r \cos \phi
\end{array}
$$

$$
y: r \sin \phi
$$

$$
\begin{aligned}
x^{\prime} & =r(\cos \phi \cos \theta+r \sin \phi \sin \theta) \\
& =x \cos \theta+y \sin \theta \\
y^{\prime} & =r(\sin \phi \cos \theta-\cos \phi \sin \theta) \\
& =y \cos \theta-x \sin \theta \\
\therefore x^{\prime} & =x \cos \theta+y \sin \theta \\
y^{\prime} & =-x \sin \theta+y \cos \theta
\end{aligned}
$$

The colum matui of the alow equation can the represented as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The sow mater of the rotation of in clock wise direction is geien by (Revers the how \& column of matrix R)

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

* Rotation are Rigid body transformation that move objuts without deformation.
* Every point on an object is rotated through the Same angle.
* polygon are Rotated by displacing each vertex through the specified rotation angle and regenerate the polygon using new vertices
Example:-
Q conside a triangle with coordinate $(0,0)(1,0)(1,1)$ and the rotation angle θ is 90° (Anticlockwir). Find the new coedinatis after the transformation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] \text {. }
$$

$$
\cos 90=0
$$

$$
\sin 90=1
$$

for Coordinate $(0,0)$

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0+0 \\
0+0
\end{array}\right]:\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
(0,0) & \Longrightarrow(0,0)
\end{aligned}
$$

for (1,0)

$$
\begin{aligned}
& \text { for }(1,0) \\
& \begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0+0 \\
1+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$(1,0) \Longrightarrow(0,1)$
For (1,1)

$$
\left.\begin{array}{rl}
\text { For } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]} & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

$$
(1,1) \Longrightarrow(-1,1)
$$

The new transformed coordinates ane $(0,0)(0,1)(-1,1)$

After Rotation
Q Consider the triangle with coordinate $(0,0)(1,0),(1,1)$ and the rotation angle is 90° (clockwise). Find the new transformed coordinate r

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta \cdot \sin \alpha \\
-\sin \theta & \cos \theta
\end{array}\right] .} \\
& \text { for }(6,0) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& =\left[\begin{array}{l}
0+0 \\
0+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& (0,0) \Longrightarrow(0,0)
\end{aligned}
$$

$\cos 90: 0$
$\sin 90=1$

Before Rotation
for (1,10)

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0+0 \\
-1+0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
\end{aligned}
$$

$(1,0) \Rightarrow(0,-1)$
for $(1,1)$

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{1}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
0+1 \\
-1+0
\end{array}\right]=\left[\begin{array}{l}
1 \\
-1
\end{array}\right] \\
(1,1) & \Longrightarrow(1,-1)
\end{aligned}
$$

Scaling
Scaling is a transformation that allies the size of an object. This operation is carried out in multiplying the coordinate values (x, y) of each vertex by scaling factors S_{x} and S_{y} to produce the transformed coodinatr $\left(x^{\prime}, y^{\prime}\right)$. The scaling equation is given as below

$$
\begin{aligned}
& x^{\prime}=x \cdot S x \\
& y^{\prime}=y \cdot S y
\end{aligned}
$$

Scaling factor S_{x} scale the object in x-disiehion Scaling factor $S y$ scales the obit in y-drention. The above bansformation equation can le witter as a matrix form as gain below

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\rho_{x} & 0 \\
0 & s_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
p^{\prime}=S \cdot p
$$

The size of the scaled object depends on the value of S_{x} and S_{y}.
i) If S_{x} and S_{y} are assigned any positive value between $0 \& 1$ reduces the size of the object. and the transformation point is closer to the origin
ii) If the value of S_{x} and S_{y} ane greater than 1 then the transformed points are away from the origin and the size of the objet gets increased
iii) If S_{x} and s_{y} equals to one then the size of the object is unchanged.
iv) If the value S_{x} and S_{x} an same, then scaling will be done uniformly is both x and y axis.
v) Unequal values of $s x$ and By results is differnitiaf scaling.
NB:-
objects transformed with the scaling equation an both scaled and repositioned.
Scaling can he peyomed with respect to the pivot point (x_{f}, Y_{7}) on fixed point which remains unchanged aftu the sealing transformation. For a vertex be lith coosdinaly (x, y), the scaled coordinated $\left(x^{\prime}, y^{\prime}\right)$ with respect to fixed point $\left(x_{f}, y_{f}\right)$ are calculated as

$$
\begin{aligned}
& x^{\prime}=x_{f}+\left(x-x_{f}\right) s_{x} \\
& y^{\prime}=y_{f}+\left(y-y_{f}\right) s_{y}
\end{aligned}
$$

* polyzoan an scaled by applying transformation to each veter and then regenerating the polygon using the transform vertices.

Example:
Q. Consider the square with Coordinates $(0,0)(2,0)(0,2)$ and $(2,2)$ and the scaling factor $S_{x}=2$ and $S_{y}=3$. find the new coordevalus in the seating transformation

$$
\begin{aligned}
& \text { find the } \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\rho_{x} & 0 \\
0 & 5 y
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \text { for }(0,0) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{l}
0+0 \\
0+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
(0,0) & \Rightarrow(0,0)
\end{aligned}
$$

For $(2,0)$

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
4+0 \\
0+0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]
\end{aligned}
$$

$$
(2,0) \Rightarrow(4,0)
$$

$$
\text { For }(0,2)
$$

$$
(0,2) \Rightarrow(0,6)
$$

For $(2,2)$

$$
\begin{aligned}
& \text { For }(2,2) \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]} \\
& =\left[\begin{array}{l}
4+0 \\
0+6
\end{array}\right]=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
\end{aligned}
$$

Before scaling

$$
\begin{aligned}
& \text { for }(0,2) \\
& {\left[\begin{array}{l}
x^{1} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2
\end{array}\right]}
\end{aligned}
$$

$$
=\left[\begin{array}{l}
0+0 \\
0+6
\end{array}\right]=\left[\begin{array}{l}
0 \\
6
\end{array}\right]
$$

After scaling

Homogenous Coordinate system
The basic transformation can he expressed in the general matrix form

$$
p^{\prime}=M_{1} \cdot p+M_{2}
$$

where P^{\prime} and P can be represented as column vector. Matrix M, is a 2×2 array contain Multiplicative
factors and M_{2} is a two -element column matia containing "translational teems. For translation, M_{1} is the identity matrix. For rotation or scaling, M_{2} contras the translational teems associated with the pivot pons or scaling fixed point.
To produce the sequence of transformation directly from initial coordinates, the multiplicative and translational teems for 2-D geometric transformation can le combined into a single matrix representation by expanding 2×2 mature representation by 3×3 matrices. This allows us to express all transformation equation as matier Multiplication providing by the expansion of matrix repesentations for coordinate positions.
Each cartesian coordinate (x, y) of the 2-0 geometric Transformation can be expressed as the tomogenous coordinate triple $\left(x_{h}, y_{h}, h\right)$ when

$$
x=\frac{x_{h}}{h} \quad, y=\frac{y_{h}}{h}
$$

' h ' can lu e any nonzero value for the 2-D geometric transformation. For convenience the value of h is simply set as 1 ie $h=1$. Each $2-0$ position is then represented with homogenous coordinate $(x, y, 1)$

The ttonogerous onatrex representation for translation cen be given as

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
x^{\prime}=x+t x
$$

$$
y^{\prime}=y+t y
$$

which can be written as $p^{\prime}=\tau\left(t_{x}, t_{y}\right) \cdot p$ The inverse of the translation matrix is obtained by Replacing the translation parameters $t x$ and ty with their negatives $-t_{x}$ and $-t_{y}$.
Homogerous matrix representation of the rotation bangoneath about the coordinate origin can le written as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

and can le represented as $p^{\prime}=R(\theta) \cdot p$ The inverse rotation matrix can le represented when θ is replaced with $-\theta$.
Homogenows matrix representation of the scaling trangfonation retative to the coordinate origin is expressed as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

and can lu e expussed as $p^{\prime}=s\left(s_{x}, s_{y}\right) \cdot p$

The inverse scaling matrix can be obtained by replacing the scaling parameters s_{x} and s_{y} with $\left(1 / s_{x}\right.$ and $\left.1 / s_{y}\right)$.
Matrix formulation and Concatenation of Transformation
Matrix can he set up for any sequence of transformation as a composite transformation matui by calculating the matrix product of the individual transformations products of transformation matrix is referred as a concatenation or composite of matrices
for column matrix representation of coorderiale position, Composite transformation an formed by multiplying matron in order from right to let. ie each sucussine transformation matrix premultiphis the product of the preceding transformation matrices
Translation
If two sucussine translation vector $\left(t x_{1}, t_{y_{1}}\right)$ and $\left(t_{x_{2}}, t_{y_{2}}\right)$ are applied to a coordinate position- p; the final transformed location P^{\prime} is calculated as

$$
\begin{aligned}
P^{\prime} & =T\left(t_{x_{2}}, t_{y_{2}}\right) \cdot\left\{T\left(t_{x_{1}}, t_{y_{1}}\right) \cdot P\right\} \\
& =\left\{T\left(t x_{2}, t_{y_{2}}\right) \cdot T\left(t_{x_{1}} \cdot t_{y_{1}}\right)\right\} \cdot P
\end{aligned}
$$

where P and P^{\prime} are the homogenous coordinate column vectors.

The composite transformation matrix for this sequence of translation is

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & t_{x_{2}} \\
0 & 1 & t_{y_{2}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & t_{x_{1}} \\
0 & 1 & t_{y_{1}} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x_{1}}+t_{x_{2}} \\
0 & 1 & t_{y_{1}}+t_{y_{2}} \\
0 & 0 & 1
\end{array}\right]} \\
02 \\
\tau\left(t_{\left.x_{2}, t_{y_{2}}\right) \cdot T\left(t_{x_{1}}, t_{y_{1}}\right)=T\left(t_{x_{1}}+t_{x_{2}}, t_{y_{1}}+t_{y_{2}}\right)} .\right.
\end{gathered}
$$

* Two successive Translation are additive

Rotations
Two successive rotations applied to point p produce the transformed posclion

$$
\begin{aligned}
P^{\prime} & =R\left(\theta_{2}\right) \cdot\left\{R\left(\theta_{1}\right) \cdot P\right\} \\
& =\left\{R\left(\theta_{2}\right) \cdot R\left(\theta_{1}\right)\right\} \cdot P
\end{aligned}
$$

- Two successive Rotation matrix an additive.

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\cos \theta, & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 \\
\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1}+\sin \theta_{2} & -\cos \theta_{1} \sin \theta_{2}-\sin \theta_{1} \cos \theta_{2} & 0 \\
\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2} & -\sin \theta_{1} \sin \theta_{2}+\cos \theta_{1} \cos \theta_{2} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & 0 \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

ie $R\left(\theta_{2}\right) \cdot R\left(\theta_{1}\right)=R\left(\theta_{1}+\theta_{2}\right)$
Final rotated coordinates can le calculated with the composite rotation matrix as

$$
p^{\prime}=R\left(\theta_{1}+\theta_{2}\right) \cdot p
$$

Scaling
Concatenating transformation matrices of two successive scaling operations produces the following composite scaling matrix

$$
\begin{gathered}
{\left[\begin{array}{ccc}
S_{x_{2}} & 0 & 0 \\
0 & S_{y_{2}} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
S_{x_{1}} & 0 & 0 \\
0 & S_{y_{1}} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x_{1}} \cdot S_{x_{2}} & 0 & 0 \\
0 & S_{y_{1}} \cdot S_{y_{2}} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
\text { or } \\
S\left(S_{x_{2}}, S_{y_{2}}\right) \cdot S\left(S_{x_{1}}, S_{y_{1}}\right)=S\left(S_{x_{1}} \cdot S_{x_{2}}, S_{y_{1}} \cdot S_{y_{2}}\right)
\end{gathered}
$$

* Two successive scaling operation is multiplicative.

General pivot point, Rotation
Graphics package provides rotation function for revolving object about the coordinate origin.
If the rotation needs to generate about any selected pivot point $\left(x_{r}, y_{r}\right)$ then the following sequence of operations need to be peyormed:

1. Translate the ofgiet so that the pivot point posclues is moved to the coordinate origen
2. Rotate the object about the Coordinate origen
3. Translate the object so that the pivot point is returned to its original position.
The alone transformation sequence is illustrated is the following figures.

original position of object and pivot point

Translation of object so that pivot point $\left(x_{r}, y_{r}\right)$ is at origin

Rotations about origin

- The composite Chansformation matrix for the above sequence is obtained with the concatenation

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & x_{r} \\
0 & 1 & y_{r} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{r} \\
0 & 1 & -y_{r} \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{r}(1-\cos \theta)+y_{r} \sin \theta \\
\sin \theta & \cos \theta & y_{r}(1-\cos \theta)-x_{r} \sin \theta \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The above matui can bo expressed is the form

$$
T\left(x_{r}, y_{r}\right) \cdot R(\theta) \cdot T\left(-x_{r},-y_{r}\right)=R\left(x_{r}, y_{2}, 0\right)
$$

where $T\left(-x_{r},-y_{r}\right)=T^{-1}\left(x_{r}, y_{r}\right)$.
General Fixed - point scaling
The following figure illustrates a transformation segues to produce scaling with respect to a selected fixed position $\left(x_{f}, y_{f}\right)$ using a seating function that can only scale relative to the coordinate origin.

1. Translate object so that the fixed point coincides with the coordinate origin
2. Scale the object with respect to the coordinate origin

3-Use the inverse translation of step 1 to return the object to its original position.

original position of object and Fixed point

Translate objet so that fixed point $\left(x, y / f_{f}\right)$ is at origin

scale object with respect to origin

Trandate objet so that the fired point is returned to the position $\left(x_{f}, y_{f}\right)$

Concatenating the matrices for these thee operations produces the requivid scaling matron.

$$
\begin{aligned}
& \text { produces the hequivid scaling matux } \\
& {\left[\begin{array}{lll}
1 & 0 & x_{f} \\
0 & 1 & y_{f} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{f} \\
0 & 1 & -y_{f} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & x_{f}\left(1-s_{x}\right) \\
0 & s_{y} & y_{f}\left(1-s_{y}\right) \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

or

$$
T\left(x_{f}, y_{f}\right) \cdot S\left(s_{x}, s_{y}\right) \cdot T\left(-x_{f},-y_{f}\right)=S\left(x_{f}, y_{f}, s_{x}, s_{y}\right)
$$

General scaling Directions
parameters S_{x} and s_{y} scale objects along the x and y directions. The object can be scaled in other disutions by rotating the object to align the descried scaling dvictions with the coordinate axes before applyening the scaling Transformations
A scaling factors with values specified by paramatues S_{1} and S_{2} in the duidion shown is the following figure.

Following an the sequence of steps that should be followed for accomplishing scaling without changing the orientation of the object.

1. peyorns rotation so that the directions for S, and S_{2} coincide with the x and y axes.
2. Scale the object
3. peyoms opposite rotation to retuen points to their original orientations

The composite mater resulting from the product of these the ne transformation is

$$
\begin{aligned}
R^{-1}(\theta) & =S\left(S_{1}, S_{2}\right) \cdot R(\theta) \\
& =\left[\begin{array}{ccc}
S_{1} \cos ^{2} \theta+S_{2} \sin ^{2} \theta & \left(S_{2}-S_{1}\right) \cos \theta \sin \theta & 0 \\
\left(S_{2}-S_{1}\right) \cos \theta \sin \theta & S_{1} \sin ^{2} \theta+S_{2} \cos ^{2} \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Eg: Unit square can lu e transformed into parallelorean by stretching it along the diagonal from $(0,0)$ to (1,1). Rotate the diagonal onto the y axis and double its length with transformation parameters $Q=45^{\circ}$, $S_{1}=1$ and $S_{2}=2$

Concatenation properties

* Matrix multiplication is assocratune.

$$
A \cdot B \cdot C=(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

* Mater product can be evaluated either from by tough on from right to let.
* Transformation products may nor be commutative. ie $A \cdot B \neq B \cdot A$
x The order is important if we an translate and rotate an object.
(8) For special cases sequence of transformation of the same kind, the multiplication of transformation matres is commutative.
Geneal Composite Transformations \& Computational Efficininy A general 2-D transformation, representing a combination of Thansutions, rotation and scaling can be expenses as

$$
\begin{aligned}
& \text { of Translations, rolalion } \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
r s_{x x} & r s_{x y} & \operatorname{tr} s_{x} \\
r s_{y x} & r s_{y y} & \operatorname{tr} s_{y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{aligned}
$$

The four elements $\gamma S_{i j}$ are the multiplicative rotation scaling teems is the transformation that involve only rotation angles and scaling factors.
Elements trsx and troy au the translational tums containing combinations of translation distances, pivor-point and fixed point coordinates, and rotation angles and scaling parameters.
The above matrix equaluon require is multiplication and 6 addition and the transformed coordinate an

$$
\begin{aligned}
& 6 \\
& x^{\prime}=x \cdot r s_{x x}+y \cdot r s_{x y}+t r s_{x} \\
& y^{\prime}-x \cdot r s_{y x}+y \cdot r s_{y y}+t r s_{y}
\end{aligned}
$$

Other Transformation
Additional Transformation used in the graphics package, are
i) Reflection
ii) Shear

Reflection
A reflation is a transformation that produces a miss image of an object. The mirror image for a 2-D reflection is generated relative to an axis of reflection by rotating the object 180° about the Seflution axis.
The axis of reflection can be choose is the by plane on perpendicular to the ry plane.
when the reflection axis is a line is the ry plane, the rotation path about this axis is is a plane perpendicular to the se plane. For the reflation axes that an perpendicular to the $x y$ plane, the Rotation path is in the ry plane.
Reflation about the line $y=0$, the x axis is accomplished with the transformation matrix

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This transformation keeps x value the same but flips the 4 value coordinate position.

Reflection about y-axis flips x coordinates while keeping y coordinates the same. The matrix for this transformation is

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Repletion Relative to an axis that is perpendicular to the $x y$ plans $\&$ that passes through the coordinate origin flip both x and y. The matrix repusentalion is

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

 regtubt position
pinion
Reflation about the axis as diagonal line $y=x$. the reflective matrix is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Reflection about the diagonal $y=-x$. The resulting transformation matui is given by

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Shear

A transformation that distorts the shape of an object such that the transformed shape appear as if the object were composed of internal layers than had been caused to slide sues each other is called a shear.
TWo common shearing Eanformation ale those thar shift x value coordivatur \& y.value coordinate.
An x-direction shear relative to the x-axis is produced with the transformation matrix

$$
\left[\begin{array}{ccc}
1 & \operatorname{sh} x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Transform coordinate position as

$$
x^{\prime}=x+\operatorname{sh} x-y \quad, y^{\prime}=y
$$

A real number can le assigned to the shear parameter Sha:
x-dicedion shear Relative to other refeencele line y, x_{4} provide terensprumation matrix as

$$
\left[\begin{array}{ccc}
1 & \operatorname{sh} x & -s h_{x} \cdot y_{n y} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Coordinate position Transformed as

$$
x^{\prime}=x+\operatorname{sh} x\left(y-y_{x y}\right), y^{\prime}=y .
$$

A,y-direction shear Relative to the line $x=x$ ry is generated with the beanspormation matux

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\text { shy } & 1 & - \text { shy. } \\
0 & 0 & 1
\end{array}\right]
$$

which generates transformed coordinate positions as

$$
\begin{gathered}
\text { ch generates transformed } \\
x^{\prime}=x, y^{\prime}=\operatorname{sh} y\left(x-x_{\text {se }}\right)+y \\
\end{gathered}
$$

This transformation shift a coordinate position vertically by an amount proportional to its distance from the reference line $x=x$ ry.
Windowing concept.
A word coordinate area selected for display is Called a window.
An area of the display device to which a Window is mapped is called a uiewport
The widow defined what is to be vied, and the
vrewpoct defines where it is to he displayed. Windows and viewpoints an rectangles is standard position. With rectangle edges parallel to the Coordinate axes
Mapping of a part of world coordinate scene to device coordinate is referred to as a veering Transformation or refereed as Window to viesput transformation

world coordinates

Device coordinates

Window to Vieippoit Coordinate Transformation
In the window to Viewpoit coordinate Transformation Object descriptions is the window pol is theinsformed to the normalized device coordinates. while transforming the object from window to viewport relative placement of object is maintained the same in the normalized viewing coordinates. If a coordinate position is at the centre of the viewing window, it will be duplyyt at the centre of the vieurport.

A point at position $\left(x, y, y_{4}\right)$ in windows is mappeal to viewpoint coordinate $\left(x_{v}, y_{v}\right)$ so that relative portion is the two areas our the same.

To maintain the same relative placement in the viecioport as in the Window, we require that

$$
\begin{aligned}
& \frac{x_{v}-x v_{\min }}{x_{v_{\text {max }}}-x_{v_{\operatorname{man}}}}=\frac{x_{w}-x_{w} w_{\min }}{x_{w_{\max }}-x w_{\min }} \\
& \frac{y_{v}-y_{v_{\min }}}{y_{v_{\max }}-y v_{\min }}=\frac{y_{w}-y_{w_{\min }}}{y_{w_{\max }}-y w_{\min }}
\end{aligned}
$$

solving the alone two equation for the vienpont position $\left(X v, y_{v}\right)$ we have.

$$
\begin{aligned}
& X v-X v_{\text {min }}=X v_{\text {max }}-X v_{\text {min }}\left(\frac{X W}{}-X w_{\text {min }}\right) \\
& X_{v}-X_{v \min }=X_{w}-X_{w} \min \left(\frac{X_{v \max }-X_{v \min }}{X_{w_{\max }}-X_{w} \min }\right) \\
& \therefore x_{v}=x_{v \min }+x_{w}-x_{w} \min \left(S_{x}\right) \\
& \text { where } S_{x}=\frac{X_{v \text { max }}-X_{v \text { min }}}{X_{W_{\text {max }}}-X_{w} \text { min }}
\end{aligned}
$$

$$
\begin{aligned}
& y_{v}-y_{u_{\text {min }}}=y_{v \text { max }}-y_{v_{\text {min }}}\left(\frac{y_{w}-y_{w \text { min }}}{y_{w \text { max }}-y_{w \text { min }}}\right) \\
& y_{v}-y_{v \min }=y_{w}-y_{w \min }\left(\frac{y_{v \max }-y_{v} \min }{y_{w \max }-y_{w} \min }\right) \\
& y_{v}=y_{v \min }+y_{w}-y_{w \min }\left(s_{y}\right) \\
& \therefore y_{v}=y_{v \text { min }}+\left(y_{w}-y_{w \text { min }}\right) S_{y} \\
& \text { whee } s y=\frac{y_{v \text { max }}-y_{u \text { min }}}{y_{w \text { max }}-y_{w \text { min }}}
\end{aligned}
$$

Relative: proportion of the object an maintained If the scaling factors are the same $\left(s_{x}=s_{y}\right)$. otherwise word objects will be starched on contracted in either the x or y direction when displayed on the output device.
Example:-
find the viewpoint coordinate $\left(x_{v}, y_{v}\right)$ with the window Coondenatu $\left(x_{w}, y_{\omega}\right)=(30,80)$ and the min and max value of the window and viewpoit is given by.

$$
\begin{array}{ll}
x_{w \text { min }}=20 & x_{v \text { min }}=30 \\
x_{w \text { max }}=80 & x_{v \text { max }}=60 \\
x_{v} y_{w \text { min }}=40 & y_{v \text { min }}=40 \\
y_{w \text { max }}=80 & y_{v \text { max }}=60
\end{array}
$$

equ is

$$
\frac{x_{v}-x_{v \text { min }}}{x_{v \text { max }}-x_{v \min }}=\frac{x_{w}-x_{w} \text { min }}{x_{w \text { max }}-x_{w} \text { min }}
$$

- $\frac{x_{V}-30}{60-30}=\frac{30-20}{80-20}$

$$
\begin{aligned}
& =\frac{x_{v}-30}{30}=\frac{10}{60} \\
& =x_{v}-30=5 \\
& =x_{v}=35 \\
& \frac{y_{v}-y_{v \text { min }}}{y_{u_{\text {max }}-y_{v \text { min }}}=\frac{y_{w}-y_{w_{\text {min }}}}{y_{w \text { max }}-y_{w \min }}} \\
& =\frac{y_{v}-40}{60-40}=\frac{80-40}{80-40} \\
& \frac{y_{v}-40}{20}=\frac{40}{40} \\
& \frac{y_{v}=60}{x\left(x_{v}, y_{v}\right)}=(35,60)
\end{aligned}
$$

Two Dimensional clipping
Any procedures that identifies those portions of a picture that are either inside or outside of a specified region of space is referred as clipping. The region against which an object is clipped is called a clip Window
Application of clipping

* Extracting pact of a defined scene for viewing
* Identifying visible suyaces in 3-D view
* Creating object using solid modeling procedures.
- Displaying a multicindow environment
* Drawing \& painting operation that allow part of the picture to be saluted for copying or during. erasing or duplicating

In the viewing transformation, those picture pas, That an within the Window area are to he dispig, Everything outside the window is discarded. clipping Algorithms are applied to the world coordinates, so that only contents of the window interior au mapped to device coordinates.
Types of clipping:-

- point clipping
- Line clipping (straight-line segments)
- Area clipping (polygons)
- curve clipping
- Text clipping

Line and polygon clipping routinises are the commonly used clipping standards is the graphics packenges.
point clipping
A point $p=(x, y)$ is saved for display of the following inequalities are satisfied

$$
\begin{aligned}
& x \omega_{\text {min }} \leq x \leq x \omega_{\text {max }} \\
& y \omega_{\text {min }} \leq y \leq y w_{\text {max }}
\end{aligned}
$$

Where the edges of the clip window ($x \omega_{\text {min }}, x \omega_{\text {max }}, y \omega_{\text {min }}$, Y(max) can be either the world coordinate window boundaries on vienport boundaries. If any one of the four inequalities is nor satisfied, the point is clipped.

Line clipping
A line clipping procedures cnotives several posts. fir, a line segment is tested to determine whither it lies completely inside the clipping window or it lies completely outside the clipping wirdas.
If the gist test fails then peyom the intersection Calculation with one or more clipping boundaries. The line is process through inside-outside rest by checking the line endpoints.
consider the following lines

Before clipping

After clipping

In the above figure line p_{1} to p_{2} is saved because both endpoints are inside the clip window
Line \& P_{3} to $P_{4}^{\text {and }}{ }_{\text {is }}{ }^{P_{9}+0}$ discarded since both end point are outride the clip boundaries.
All other lines cross one or moss dipping boundaries and may require calculation of multiple intersection points

All line segments gall into the following clipping categories

1. Visible:- Both end points of the tine segment hie within
the Window
2. Non-visible:- when line lies outside the window. This will occurs if the line segment from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ satisfies any one of the following inequalities

$$
\begin{array}{ll}
x_{1}, x_{2}>x_{\text {max }} & y_{1}, y_{2}>y_{\text {max }} \\
x_{1}, x_{2}<x_{\text {min }} & y_{1}, y_{2}<y_{\text {min }}
\end{array}
$$

3. partially visible:- A line is partially visible when a pact of its lies within the Window

Cohen-Sutherland Algorithm
. Coken-Sutherland Algonithon is the most popular live clipping procedures. This method speeds up the processing of line segments by peyorning initial tests that reduce the number of intersections that must he calculated.
Every line end point in a picture is assigned a four digit binary code called a region code that identifies the location of the point relative to the boundaries of the clipping rectangle.
Regions are set up in Reference to the boundaries as shewn in the following figure. Each bit positions in the region code is used to indicate one of the four relative coordinate positions of the point with respect to the clip iudew
to the left, light top or bottom.

$1001:$	1000	1010
$0001:$	0000	0010
	window:	

The region alone of window is 1000 The region below of window is 0100 The region let of window is 0001 The region right of window is 0010 Top let corner is 1001 (OR Operation of above and left region of window) Top right conner is 1010 (OR operation b/w right \& alone)
Bottom let cosher is 0101 (OR Operation b/w lye \& below) Bottom Right comer is 0110 (OR operation lw below \& Right) for any endpoint (x, y) of a line, the code can be detumined that identifies which region the endpoint his The code's lists are set according to the following condition

- Fur lit set 1 : point lies to left of window $x<x_{\text {min }}$
- second bet set 1 : point lis to right of window $x>x_{\text {max }}$
- Third lit set 1 : point lies below (bottom) wind ar $y<y$ min
- Fo wert bit set 1: point his above (top) window $y>y$ max
* Any lines that are completely contained within the Window boundaries have region code of 0000 for both endpoints and can trivally accept that line
* Any lives that have a 1 in the same bit position in the Region code for each endpoints are completely outside the clipping Window and trivially reject that lime ie we can discard the line that has a region code of 1001 for one end point and a code of 0101 for the other endpoint. Both this endpoint are let to the clipping window
* The lines which is nor completely inside or outside of the window is checked by peyorming logical AND operation with both region coder. If the result of AND operation is 0000° then part of the line may lie inside the Window regions and the line segment curs the window edgy
* Begins the clipping process for a line by comparing an outside endpoint to a clipping boundary to detumine how much of the line can le discarded. Then the Remaining part of the line is checked against the other boundaius and we continue until either the line is totally discarded or a section is found inside the window.
Example:-
Consider the line given is the following figures.
starting with the bottom endpoint of the line fiom p_{1} to p_{2}, p_{1} is checked against the let, right and bottom boundaries and find that the point p_{1} his

below of the clip widow. Find the intersection point $p_{1}{ }^{\prime}$ with the bottom boundary, and discard the lime p_{1}^{\prime} to p_{1}

The line is reduced to p_{2} to p_{1}^{\prime}
Now the endpoint P_{2} is outside the clip window, this point is checked against the boundaries and find that it is to the left of the window. Intersection point $p_{2}{ }^{\prime}$ is calculated but this point is alow the window. So the intersection calculation yield $P_{2}^{\prime \prime}$ and the line from P_{1}^{\prime} to $P_{2}^{\prime \prime}$ is saved

for the second line the point β_{3} is to, the left of the clipping rectangle and detumine the intersection P_{3} ' and eliminate the line section from P_{3} to $P_{3}{ }^{\prime}$. And by checking the region codes for the line section from $P_{3}{ }^{\prime}$ to P_{4} the line is found to lu e below the clip window and is discarded

Intersection paints with a clipping boundary can he calculated using the slope-intercept form of the line equation. A line with endpoint coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, The y coordinate of the intersection point with a vertical boundary can lu e obtained with the equaluis

$$
y=y_{1}+m\left(x-x_{1}\right)
$$

where x value is set either to $x \omega_{\min }$ or $x u_{\max }$ and slope, m is calculated as $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
The inturution with horizontal boundary, x coordinate can lu e calculated as

$$
x=x_{1}+\frac{y-y_{1}}{m}
$$

with y. set either $y \omega_{\min }$ on $y \omega_{\text {max }}$
Advantages of cohen sutherland Line clipping
$\rightarrow \operatorname{simple}$
\rightarrow limited to reelangular region
\rightarrow Extension of $3 D$ clipping

Q Use the cohen sutherland algaithm to clip line $P_{1}(70,20)$ and $P_{2}(100,10)$ agpunis a window lower left hand conner $(50,10)$ and upper right hand course $(80,40)$
sotulios

$$
\begin{aligned}
& p_{1}=(-0,20) \\
& p_{2}=(100,10)
\end{aligned}
$$

left comes $=(50,10)$

Right comes $=(80,40)$
Assign 4 bit binary oureods
point P_{1}, is inside the coindow so out ede of $p_{1}=0000$ and the outcoale of $P_{2}=0010$ as P_{2} is right of the window
AND operation of P_{1} and P_{2}

$$
\begin{aligned}
& 0000 \\
& 0010 \\
& \hline 0000
\end{aligned}
$$

The result of AND opecaloin is zeno. soleure is poutially visible.
Slope of line $p_{1} p_{2} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-20}{100-70}=\frac{-10}{30}=\frac{-1}{3}$
The intersection of line $p_{1} p_{2}$ with right edge of the Window ie point P_{2}.
Let the intersection point ln (x, y)

$$
\begin{gathered}
x=80, \quad y=? \\
P_{2}\left(x_{2}, y\right)=P_{2}(100,10)
\end{gathered}
$$

$$
\begin{aligned}
& m=\frac{y-y_{2}}{x-x_{2}} \\
& \frac{-1}{3}=\frac{y-10}{80-100} \Rightarrow \frac{-1}{3} x-20=y-10 \\
& y-10=\frac{20}{3} \rightarrow y=\frac{20}{3}+10=16.66
\end{aligned}
$$

\therefore the intersection point $p_{3}=(80,16.66)$
After clipping line $p_{1} p_{2}$ against window the now lune is $P_{1} P_{3}$ with coordinates $P_{1}(70,20)$ and P_{3} $(80,16.66)$
Midpoint Subdivision Algorithen
One of the disadvantage of cohen-sutherland is to find the intersection point of line with window boundary: Midpoint subdivision method is used to find the intersection point. The line segment is divided at its midpoint into two smaller line segments. The clipping categories the two new line segments into completly accepted on rejected or partially arupred. Each line segment which which needs to ho partially accepted ore divided again into smaller segments and then categories again.
The bisection (finding mid point) and carogorization process continues until all line segments are completly accepted or Rejected.
The midpoint coordinates ($x \mathrm{~m}, y_{\mathrm{m}}$) of a line segment
joining $p_{1}\left(x_{1}, y_{1}\right)$ to $p_{2}\left(x_{2}, y_{2}\right)$ are gevin by

$$
x_{m}=\frac{x_{1}+x_{2}}{2} \text { and } y_{m}=\frac{y_{1}+y_{2}}{2}
$$

The Algasthm can le formalized as:-
For each endpoints:
a) If the end points lie in Dindow, it is visible and the line accepted, process complete
b) If the end points lie outside the window, it is trivially invisible, and the line is rejected,
process complete facts, then Divide
C) If the above two test farts , is midpoint pm. Apply the the line $P_{1} P_{2}$ the two segments $P_{1} p_{m}$ and pervious tests to the paly invisible then it is $p_{m} p_{2}$. If $p_{m} p_{2}$ is continue with $p_{1} p_{m}$. rejected. And continue until the intersection This process continue the boundary is found. point of the line $A(0,0)$
Q A clipping window $A B C D$ is specified asiont subdivision $B(40,0) \quad C(40,40)$ the portion. If any, of the line algoithon find the visits portion $P(-10,20)$ and $Q(50,10)$ Segment joining the porn :
solulim is 0010 . The outcode of P is 0001 and Q this Both endpoint codes are nor zero and their
logical AND is zero, so that line cannot he rejedes midpoint is

$$
\begin{aligned}
& x_{m}=\frac{x_{1}+x_{2}}{2}=\frac{-10+50}{2}=20 \\
& y_{m}=\frac{y_{1}+y_{2}}{2}=\frac{20+10}{2}=15
\end{aligned}
$$

outrode of midpoint $\operatorname{pm}\left(x_{\mathrm{m}}, 4 \mathrm{~m}\right)$ is 0000 Neither segment PPm nor $P_{m} Q$ is either totally visible or totally invisible. Fir r consider the segment $P M C Q$ and save the segment PPm.
This subdivision process continues until we find a_{n} intersection points with window edge $(40,4)$. The following table show the subdivision Wok.

Save pron \& continue with $p m a$

Continue with $P m Q$ continue with PPM Continue with $P m Q$ T his is the internetion point of line with Right Window edge Recall $P P_{m}$ \& Continue with PF er continue with $P \ln Q$ Continue with opus Continue with Pea This is the intersection pour of line With lye window ed γ^{\prime} Thus visible passion of line segment $P Q$ is from $(0,17)$ to $(40,1)$
polygon clipping
A polygon boundary processed won a line clipper may he displayed as a series of unconnected line segment depending on the orientation of polygon to the clipping window. After polygon clipping a boundary area is bee displayed.

Beyer clipper
polygon clipping algorithms generate one or more closed area. The output of the polygon. clipper should be a sequence of vesture that defines the clipped polygon bounder,

After clipping
Sutherland Hodgaman polygon dipping.
A polygon can le clipped correctly by processing the polygon boundary as a whole against each window edge. This is accomplished by processing all polygon veituis
against each dip rectangle boundary in then. Fist clip the polygon against the left rectangle boundary to produces a new sequence of vertici. The new set of vectius then passed to a right bounder clipper, a bottom boundary clipper and a top bound y clipper
The following figure shows the clipping of polygon in

ORiginal
potyson

ley+

Top clip

At each step a new sequence of output vertices is generated and passed to the next Window boundary clipper following 4 tests are peyound when each pair of adjacent polygon vectien is passed to a Window boundary clipper 1) If the first vertex is outside the window boundary and the second vertex is inside, both the intersection point of the polygon edge with the wiadew boundary and the second vertex ale oolded to the output vertex list.
2) If both input vertices ane inside the window boundary only second vertex is added to the output vectic his.
3) If the first vastest is insiale the window boundary and the second vertex is outside only the edge intersection With the window boundary is added to the output rester lir
4) If both input vertices an outside the window boundary, nothing is added to the output vertex list

out - in
save v_{1}^{\prime}, v_{2}

in -in
save v_{2}

is - out
sam $v_{1}{ }^{\prime}$

out -out
Save none

Implementing the algorithm requires a storage for an output list of vertices as a polygon.

Q consider the following given polygon. clip the surface of the polygon which lies outside the clip window with respect to the vertices $V_{1} V_{2} V_{3}$

Left clip
The edges in the polygon are
$v_{1} v_{2} \rightarrow$ in - in, save v_{2}
$V_{2} V_{3} \rightarrow$ in-out, save V_{2}^{\prime}
$V_{3} v_{1} \rightarrow$ out in, sam $v_{3}^{\prime} v_{1}$

After lye clip the polygon looks like

Right clip

Edges in The polygon are $V_{1} V_{2} \rightarrow$ in -in, s are \dot{V}_{2}
$v_{2} v_{2}^{\prime} \rightarrow$ in -in), save v_{2}^{\prime}
$v_{2}^{\prime} v_{3}^{\prime} \rightarrow$ in -in, save v_{3}^{\prime}
$v_{3}^{\prime} v_{1} \rightarrow$ in $-i n$, save v,
Top clip
Edges of the polygon an
$v_{1} v_{2} \rightarrow$ in -is, save v_{2}
$v_{2} v_{2}^{\prime} \rightarrow$ in -is, same v_{2}^{\prime}
$v_{2}{ }^{\prime} v_{3}{ }^{\prime} \rightarrow$ in - in , save $v_{3}{ }^{\prime}$
$v_{3}^{\prime} v_{1} \rightarrow$ in - in , sane v_{1}
Bottom dip
Edges of the polygon ane $v_{1} v_{2} \rightarrow$ out -in, save $v_{1}^{\prime} v_{2}$
$V_{2} V_{2}^{\prime} \rightarrow$ in -in, same V_{2}^{\prime}
$V_{2}{ }^{\prime} V_{3}{ }^{\prime} \rightarrow$ in out, same $V_{2}{ }^{\prime \prime}$
$V_{3} V_{\text {, }} \rightarrow$ out-out, same non

Q. Consider a polygon $A B C D$, clip the polygon aegaunit the rectangular window

Left clip
Edges are
$A B \rightarrow \therefore$ out - in, save $A^{\prime} B$
$B C \rightarrow$ in - in, save C
$C D \rightarrow i$ is $-i n$, save D
$D E \rightarrow$ in -in, save E
$E A \rightarrow$ is-out, save E^{\prime}

Clip Right
Edges are
$A^{\prime} B \rightarrow$ in - in, save B
$B C \rightarrow$ in - in, save C
$C D \rightarrow$ in -out, save C^{\prime}
$D E \rightarrow$ No value
$E E \rightarrow$ out -in, save $E^{\prime \prime}$

Bottom dip
$A^{\prime} B \rightarrow$ in - in, save B
$B C \rightarrow$ infin) sam C
$C C^{\prime} \rightarrow$ in - in) sam C^{\prime}
$c^{\prime} \epsilon^{\prime \prime} \rightarrow$ in-out, save $c^{\prime \prime}$
$E^{\prime \prime} E^{\prime} \rightarrow$-.-olt-in, save $E^{\prime \prime \prime}, E^{\prime}$

$E^{\prime} A^{\prime} \rightarrow$ in -in, sam A^{\prime}
Top dip
$A^{\prime} B \rightarrow$ in-out, save B^{\prime}
$B C \rightarrow$ out - in, save $B^{\prime \prime} C$
$C c^{\prime} \rightarrow$ in - in, $8 a V e c^{\prime}$
$C^{\prime} E^{\prime \prime} \rightarrow$ in $-i n$, save $E^{\prime \prime}$
$E^{\prime \prime} \epsilon^{\prime \prime \prime} \rightarrow$ in $-(\bar{n})$ save $E^{\prime \prime \prime}$ $E^{\prime \prime \prime} E_{1}^{\prime} \rightarrow$ in - in, save E^{\prime} $E^{\prime} A^{\prime} \rightarrow$ is - in , sam A^{\prime}

\therefore A. Advantage \& Disadvantage of sutherland-Hodgeman Alk All convex polygon are corsutly clipped by the sutheeland Alga
(1) But concave polygon clipping using sutherland Alga displayed with extraneous line.
Weiler Atherton polygon clipping
In weiler algorithm vertex processing procedures for werida boundaries are modified so that concave polygons are displayed correctly. The basic ides in weill Athertion Algorithms is that instead of always
proceeding around the polygon edges as vertices an processed, sometimes want to follow the window boundain. Which path we follow depends on the polygon processing direction (clockioin on countuclackeit) and whether the pair of polygon vertices currently being processed represents an outside to inside parc or an inside to outside pair.
clipping window he initially called the clip polygon and the polygon to le clipped the subject polygon. start with an arbitrary vertex of the subject polygon and trace around its border is the clockwise direction until an intersection polygon point of the polygon is reached.

1. If the edge enters the clip polygon record the intersection point and continue to trace the suljuet polygon.
2. If the edge leaves the clip window, Record the intersection point and make a righttion to follow the clip window in the same manner:
For dackwir processing of polygon vertices, we Use the following rules.
(1) For an outride-inside pair of vertices, follow the polygon boundary.
(1) For an inside-outside pair of vertices, follow the window boundary in a clockwise divictios

Q clip the following given polygon with the wile Athaton Algorithm.

1. Start with the starting vaster v_{1}, and move around the polygon. The first edge $v_{1} v_{2}$ is from outside-inside dip window. so the intersection point with the clip Window is marked as v_{1}^{\prime}
2. Moving around the edge v_{2} to v_{3}. it is inside the clip window
3. Moving around the edge v_{3} to v_{4} it is insole to outside pair of vertices. then follow the window boundary i find the intersection with the window boundary V_{3}^{\prime} and make the right then through the window boundary
4. Moving around the edge v_{4} to v_{5} it is outsale-insid Window so consider the intersection point $V_{4}{ }^{1}$.
5. Moving around edge v_{5} to v_{b} it is instate outside so find the intersection point V_{5} ' and moving around the window boundary.

$\frac{\text { Subject window }}{V_{1}} \quad \frac{\text { Clipwindout }}{C_{1}}$

After clipping

$$
\text { First boundary }=v_{1}^{\prime} v_{2} v_{3} v_{3}^{\prime} v_{1}^{\prime}
$$

second bosudary $=V_{7}^{7}$

$$
v_{4}^{\prime} v_{5} v_{5}^{\prime} v_{4}^{\prime}
$$

Initially we are stating with first intersection is subject window and following the vertices till the nett intersection is reached. If the next intersection is found in subject window match the second intersection point of subject window to the same intersection point present in clip window. then follow the clip wind ow till the first insecsections point of the subject wind ow is reached to get of closed polygon boundary.

- Then fisad the second intersection point v_{4}^{\prime} and follow the subject window v_{q}^{\prime} to the next inturentios, point V_{5}^{\prime} and map ' V_{5}^{\prime} ' to V_{5}^{\prime} in the clip window and follow clip window to reach the initial inturecti. point till V_{q}^{\prime} is reached and mack the boundary.

Q Consider the following polygon and clip the same Using Wailer Atherton Algm

Consider edges.

$$
\begin{aligned}
& v_{1} v_{2} \rightarrow \text { out -in, save } v_{1}^{\prime} \\
& v_{2} v_{3} \rightarrow \text { in -in, save } v_{2}, v_{3} \\
& v_{3} v_{9} \rightarrow \text { in-out, same } v_{3}^{\prime}, v_{5}^{\prime}, \\
& v_{4} v_{5} \rightarrow \text { out-out, Now. } \\
& v_{5} v_{6} \rightarrow \text { out -in, save } v_{5}^{\prime}, v_{6} \\
& v_{6} v_{7} \rightarrow \text { in-out, save } v_{6}^{\prime}, v_{1}^{\prime} \\
& v_{7} v_{1} \rightarrow \text { out-out, None }
\end{aligned}
$$

The Dimensional object Representation
Graphics sure can contain many different kinds of olid like tees, flowers, cloud, rocks eli. It is difficult to Use a single method to describe all object i in graphics. because of the difference in characteristics of the object material.
Repersentation scheme for solid otgiels are divided into two broad calegomis

1) Boundary Representation
2) Space-poititioning Repusentation

Boundary Representation describe a 3-0 objects as a set of sugars that separate the object interior from the environment eg: polygons.
space-pailitioning Representation an used to descale/ interim properties by partitioning the spatial legion containing an object into a ser of small, nonouulapp contigous solids called cube. A common span partitioning ropusentation is octree.
polygon suyaces
The most commonly used boundary repersentation for 30 graphics object is a set of suyau polygon that enclose the object interim. Many graphics system store all object desertions as sets of suyou polygons. This simplifies and speed up the suyace

Rendering and display of objects, since all suygaes an desciluel with the linear equation. Due to this reason polys descriptions ar often rejered to as standard graphics offed polygon Table
A polygon sugar is specify with a set of venter coodind and associated w_{i} th the attribute parameters. As information for each polygon is input, data ar placed into tables that an used in the subsequent processing, display and manipulation of the objects in the scene.
polygon data table is organized into two groups.

1. Geometric data tables
2. Attribute cables

Creometri data Table contain vertex coordinates and parameters to identify the spatial orientation of the polygon sugars
Attribute information of an object include parameters specifying the degage of transparency of the object and its suyace reflexivity \& texture characteristics.
Geometric date table consists of 3 parts
\rightarrow Veetér table
\rightarrow Edge Table
\rightarrow polygon sugar Table.
The edge table contains a pointer back to the vertex table to identify the vertices of each edge.

Scanned with CamScanner
polygon table contains pointers back into the edge table to identify the edges for each polygon Consider the following given polygon

$$
\begin{aligned}
& \text { Vertex Table } \\
& \hline v_{1}: x_{1}, y_{1}, z_{1} \\
& v_{2}: x_{2}, y_{2}, z_{2} \\
& v_{3}: x_{3}, y_{3}, z_{3} \\
& v_{4}: x_{4}, y_{4}, z_{4} \\
& v_{5}: x_{5}, y_{5}, v_{5} \\
& v_{6}: x_{6}, y_{6}, z_{6} \\
& \hline
\end{aligned}
$$

Edge rathe
$E_{1}: v_{1}, v_{2}$
$E_{2}: v_{2}, v_{3}$
$E_{3}: v_{3}, v_{1}$
$E_{4}: v_{3}, v_{4}$
$E_{5}: v_{4}, v_{5}$
$E_{6}: v_{5}, v_{1}$

polygon sugar Table

$$
\begin{aligned}
& S_{1}: E_{1}, E_{2}, E_{3} \\
& S_{2}: E_{3}, E_{4}, E_{5}, E_{6}
\end{aligned}
$$

Extra information can lu added to the date table for faster information exaction. We can expand the edge table to include forward pointer into the polygon table so that common edger between polygons could le identified more rapidly.

$$
\begin{aligned}
& E_{1}: v_{1}, v_{2}, s_{1} \\
& E_{2}: v_{2}, v_{3}, s_{1} \\
& E_{3}: v_{3}, v_{1}, s_{1}, s_{2} \\
& E_{4}: v_{3}, v_{4}, s_{2} \\
& E_{5}: v_{4}, v_{5}, s_{2} \\
& E_{6}: v_{5}, v_{1}, s_{2}
\end{aligned}
$$

Additional geometri information is usually stored in the datatable which includes
\rightarrow slope of each edge, m
\rightarrow Coordinate extends of each polygon ($x_{\text {min }}, x_{\text {max }}, y_{\text {min }}, y_{m,}$, slopes can be calculated from the inputed vations using $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
By scanning the Coordinate value the min 8 max value of x and y-coordinates can le identified for each polygon.
Some of the following Tests are performed by the graphic packages in the geometric date tables are.

1) Check that every vertex is listed as an endpoint for at least two edges
2) check that every edge is a part of ar lease one polygon.
3) check that every polygon is closed
4) check that each polygon has at least one shared edge
5) Check that if the edge tables contains pointers to polygon.
plane Equation
To produce the display of $3 D$-object we must peocesth input date representation. for the object through several procedures. These steps include hansformation of the
modeling and the world coordinate descriptions to vieuring coordinates, then to device coridinatis, identification of visible suyace and the applicalums of surface rendering (smoothening the polygon surface) procedures.
For some of there processes, we need information about spatial orientation of the individual suegace components of the objects. This information is obtained from the vertex coordinate values and the equations that descute the polygon planes.
The equation of the plane suyare is expressed in the form

$$
A x+B_{y}+C_{z}+D=0
$$

where (x, y, z) is any point on the plane, and the coefficesit. A, B, C, D are the constants describing the spatial properties of the plane.
The values of the $A, B, C, \& D$ can lu obtained by solving a set of 3 plane equations using the coondinatevalues for 3 noncolinear points in the plane $\left(x_{1}, y_{1}, z_{1}\right)$, $\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ and solve the equation for the ratio $A / D, B / D$ and C / D. as

$$
(A / D) x_{k}+(B / D) y_{k}+(C / D) x_{k}=-1 \quad k=1,2,3
$$

The solution for this set of equation can he ottacines in detuminant form using cramesi Rule as

$$
\begin{array}{ll}
A=\left|\begin{array}{lll}
1 & y_{1} & z_{1} \\
1 & y_{2} & z_{2} \\
1 & y_{3} & z_{3}
\end{array}\right| & B=\left|\begin{array}{lll}
x_{1} & 1 & z_{1} \\
x_{2} & 1 & z_{2} \\
x_{3} & 1 & z_{3}
\end{array}\right| \\
C=\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| & D=-\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & 22 \\
x_{3} & y_{3} & 2
\end{array}\right|
\end{array}
$$

By expanding the detuminants the plane coefficients is of the form

$$
\begin{aligned}
& \text { the form } \\
& A=y_{1}\left(z_{2}-z_{3}\right)+y_{2}\left(z_{3}-z_{1}\right)+y_{3}\left(z_{1}-z_{2}\right) \\
& B=z_{1}\left(x_{2}-x_{3}\right)+z_{2}\left(x_{3}-x_{1}\right)+z_{3}\left(x_{1}-x_{2}\right) \\
& C=x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) \\
& D=-x_{1}\left(y_{2} z_{3}-y_{3} z_{2}\right)-x_{2}\left(y_{3} z_{1}-y_{1} z_{3}\right)-x_{3}\left(y_{1} z_{2}-y_{2} z_{1}\right)
\end{aligned}
$$

plane equation are used to identify the position of spatial points relative to the plane surface of an object. If $A_{x}+B_{y}+C_{z}+D \neq 0$ then point (x, y, z) is not on a plane If $A_{x}+B_{y}+C_{z}+D<0$ then point (x, y, z) is inside the sugar If $A x+B_{y}+C_{z}+D>0$ then point (x, y, z) is outside the sure These inequality tests an valid in a cartesian system, procured the plane parameter A, B, C, D were calculated Using vertices selected is a cocinterclockwis order. when vieuring the suyau in an outside-to-inside dint t

Polygon Meshes
Some Graphics packages provide several polygon function for modeling objects. They are generally two polygon functions used.

* Triangle strip
* Quadrilateral mesh

Triangle strip function produces $(n-2)$ connected triangle $n=8$ then it produce 6 traingles

Quadrilateral Mesh generates a mesh of $(n-1) \times(m-1)$ quadrilaterals if the given coordinates for an $n \times m$ array of vaticis.
consider the following example.
5 vertices in column
4 vertices is low
So the array is 4×5
4 quadrilateral in column and 3 quadrilateral in sion
$4 \times 5 \rightarrow$ vertices
4
$3 \times 4 \rightarrow$ quadrilateral

Basic 3D Transformation
Methods for geometries transformations and object modeling is 3-D are extended from 2-D method by including considuations for the z coordinate.
An object can be translate by specifying a 3-0 translation vecloin, which detumines how much the object is to he moved in each of the 3 coordinate direction
An object can he scaled with three coordinate scaling factors.
In rotation, rotation about an axis and the rotation about the plane is to he considued.

Translation
In a 3-D homogenous coordinate representation, a point is translated from position $p=(x, y, z)$ to position p^{\prime}. $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ with the following matrix operation

$$
\begin{gathered}
\text { z' } \left.^{\prime} \text { with the following mainer } \begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
0 \\
P^{\prime}=T \cdot P
\end{gathered}
$$

The Equation of Translation is given as

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t y \\
& z^{\prime}=z+t_{2}
\end{aligned}
$$

The how matrix representation of $3-D$ translation transformation
(1) An object is translated in 3-D by transforming each of the defining points of the object. For an object which is represented as a set of polygon surfaces, we can translate each vertex of each sura.

(8) The inverse translation can be obtained by providing negative to the translation vectors like $\left(-t_{x},-t_{y},-t_{2}\right)$

Rotation
To generate a 3-D rotation transformation for an object. we must decide an axis of rotation (axis by which the object is to be rotated) and the amount of angular rotations.
(0) positive angle rotation produce countervie.roration about a coordinate avis
(*) Negative angle produce clockwise rotation about a coordinate axis.

Rotation about z-axis
The rotation of a object about z-axis is gevien b

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta \\
& z^{\prime}=z
\end{aligned}
$$

parameter ' θ ' specific the Rotation angle.
In homogenous coordinate system the 3-D z-axis rotate is expressed in column matrix form of antielockui

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

The equation is guin as $P^{\prime}=R(\theta) \cdot P$
The rotation 30 transformation in z-axis can be expusted in row matrix \therefore in antielockurise dividion is guin as

$$
\left[\begin{array}{lll}
x & y^{\prime} & z \\
x
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

$$
\left[\begin{array}{lll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right] \cdot\left[\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The clock wire rotation (-0) of the $3-0 \geq$ axis in Column matrix form is expressed as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

The clockwisi rotation $(-\theta)$ of the 3-D L axis in row matrix form is expressed as

$$
\left[\begin{array}{lll}
x^{\prime} y^{\prime} z^{\prime} & 1
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right] \cdot\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation about x-axis
Rotation about x-axis in 3-D is obtained from the transformation matrix of rotation about z-axis with Q cyclic permutation of the coordinates parameters x, y and $z \quad u \quad x \rightarrow y \rightarrow z \rightarrow x$ use is the z-axis rotation equation and the equation becomes

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta
\end{aligned}
$$

where ' θ ' specifies the rotation angle L

In homogenous coordinate system the 3D-ain x - a_{2} rotation can lu e expressed in the column matrix far in anticlockuris dirution ie (θ)

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation of $3 D$-object about x-axis in anticlockeotse direction can be expressed in Row matrix as follows.

$$
\left[\begin{array}{lll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

x-axis 3D object Rotation in clockeoire direction in column matrix can he expressed as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

x-axis 3D object Rotation in clockwise direction in how mature can lu expressed as

$$
\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation of 30 -ofjut alout y.axis
Rotation of 3D-objict alout y axis in anticlockwise direction can be oblainied the cyclie peunutation of the coordinate parameter x, y and z in y-rodation iex $\rightarrow y \rightarrow 2 \rightarrow x$
The equation of 30 rotalion about y axis is gevien as

$$
\begin{aligned}
& y^{\prime}=y \\
& x^{\prime}=z \sin \theta+x \cos \theta \\
& z^{\prime}=z \cos \theta-x \sin \theta
\end{aligned}
$$

In homogenous coordinate system the $30-y$ axis retation is antidockuris diection expersed is colum natir is as follows

$$
\begin{aligned}
& \text { is as jollows } \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
&
\end{aligned}
$$

3D-yaxis rotation inaticlockuirs devection is expressed is how matrix is as follows.

$$
\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime} \\
1
\end{array}\right]:\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta & 0 & -\sin \theta & 0 \\
0 & 1 & 0 & 0 \\
\sin a & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

30-yaxis rotations in clokwier deriction ($-\theta$) is expsessed in column matric as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & -\sin \theta & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D rotation in clockwise direction can be expressed in Row mater as

$$
\left[\begin{array}{llll}
x^{\prime} & y^{\prime} & z^{\prime} & 1
\end{array}\right]=\left[\begin{array}{llll}
x & 4 & z & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling.
The matrix expression for the scaling transformation of a position $p=(x, y, z)$ relative to the coordinate origin can le written as

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
S_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

where the S_{x}, S_{y} and S_{z} ane the scaling factors along x, y and z directions
The equation for the coordinate-bransfounation for scaling relative to the origin an

$$
\begin{aligned}
& x^{\prime}=x \cdot s x \\
& y^{\prime}=y \cdot s y \\
& z^{\prime}=z \cdot s_{z}
\end{aligned}
$$

(1) Scaling an object changes the size of the Object and reposition the object relative to the coordinate origin.
(8) If the scaling factors are nor all equal, then the dimension in the object ane change.
(1) The original shape of an object can be preserve with a uniform scaling $\left(S_{x}=S_{y}=S_{z}\right)$.
Scaling with respect to a selected fixed point (fixed posctinis) $\left(x_{f}, y_{f}, z_{f}\right)$ can he represented with the following tranforint Sequence:

1. Translate the foxed point to the origin
2. Scale the object Selatini to the coordinate origin 3. Translate the fixed point back to its original position. The above sequence of leansformation is demonstrated in the following diagram.

The matrix representation for an arberravy fixed-poink scaling can then be expressed as the concatenation of these translate-scale-transbate-trannfounation a_{1}

$$
T\left(x_{f}, y_{f}, z_{f}\right) \cdot S\left(s_{x}, s_{y}, s_{z}\right) \cdot T\left(-x_{f},-y_{f},-z_{f}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & \left(1-s_{x}\right) x_{f} \\
0 & s_{y} & 0 & \left(1-s_{y} y_{f}\right. \\
0 & 0 & s_{z} & \left(1-s_{z}\right) z_{f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for peyours inverse scaling, replace the scaling parasite S_{x}, S_{y} and S_{2} by their reciprocals as $1 / s_{x}, 1 / s_{y} \& \frac{1}{s_{2}}$ is the scaling matrix.
Reflection
A 3-D reelection can le peyouned relative to a saluted repletion axis or with respect to a selected reflection plane.
Reflection at y-axis:-
If the object is reflected about y-axis, we have to keep the magnitude of x, y and z coorderatis as it is and need to change the sign of $x \& z$ coordinates. The transformation onatixi will he

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection at x-axis:-
Value of x is nor changed \& y \& z^{\prime} 's sign get change. The matrix is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection at z-axis:-
Value of z is nor changed and x and y 's sign is changed. And the leangformation matrix is

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection through plane:-
Repletion through $x y$ plane:-
In the reflection through $x y$ plane only the z-coordinate value of the offict's position get change is they ane lecersed in sign. The transformation mativi of reflection through the by plan is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection through $y \geq$ plane:-
y $\& z$ is unchanged \& sign of x is changed

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection through $x \geq$ plane:-
Reflecting object about $x z$ plane, $x e z$ is unchanged and the sign of y is changed. The transformation matrix is given by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Shearing
shearing transformation can lu used to modify object shaper. The following transformation produces a z-axis shear

$$
S H_{Z}=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where as b can be assigned to any real values.

The effect of the above transformation onatix is to alter x \& y coordinate r values by an amount that is proportional to the z-uvalue, while leaving z-coorduiale as unchanged.
following are the example of the effect of sheaving matexi on a cull by shear values $a=b=1$.

Quadric Sugars:
Afrequently used class of object are the quadric Sugars, which are described with second degree Equation. It includes.
\rightarrow sphere

$$
\begin{aligned}
& \rightarrow \text { spues } \\
& \rightarrow \text { Ellipsoid }
\end{aligned}
$$

\rightarrow Torus.
\rightarrow paraboloid
\rightarrow hyperboloid.
Quadric suyenes particularly sphere and ellipse an the common elements of graphics scene and are available in graphics packages.

Sphere
In cartesian coordinates, a spherical suyace with Radio, ' r ' centered on the coordinate origin is defined as the set of points (x, y, z) that satujy the following equation

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

The spherical suegace can also le descutce is the parametric form using the latitude angle longitudes angle o as

$$
\begin{array}{ll}
x=r \cos \phi \cos \theta & -\pi / 2 \leq \phi \leq \pi / 2 \\
y=r \cos \phi \sin \theta & -\pi \leq \theta \leq \pi \\
z=r \sin \phi &
\end{array}
$$

fig: parametui coordinate position $(r, 0, \phi)$ on the susan of a sphene with radius ' r '
Ellipsoêd
An ellipsoidal surface can lu described as an extension of a spherical suyace, chan the radius in there mutually perpendicular directions can have different values.
 centered on the origins

The cartesian representation for points over the surer of an ellipsoid centered on the origin is given by

$$
\left(\frac{x}{r_{x}}\right)^{2}+\left(\frac{y}{r_{y}}\right)^{2}+\left(\frac{z}{r_{2}}\right)^{2}=1
$$

paramatui representation for the ellipsoid in tums of the latitude angle ϕ and the longitude angle θ is gavin as

$$
\begin{array}{ll}
x=r_{x} \cos \phi \cos \theta & -\pi / 2 \leq \phi \leq \pi / 2 \\
y=r y \cos \phi \sin \theta & -\pi \leq \theta \leq \pi \\
z=r_{z} \sin \phi &
\end{array}
$$

Torus
A Torus is a doughnut shaped object as given below

$f_{1 g}$: A rover with circular cross section centered on coordinate origin

A Torus can he generated by rotating a crick or other conic shape about a specified axis. The cartesian Representation for points over the suyace of a Torn can lu e written in the form

$$
\left[r-\sqrt{\left(\frac{x}{r x}\right)^{2}+\left(\frac{y}{r y}\right)^{2}}+\left(\frac{z}{r_{2}}\right)^{2}=1\right.
$$

where ' r ' is any offset value.
parametric representation for a torus an simitar to those of an ellipse, except that ange ϕ extends over 360°. Using latitude and longitude angles ϕ and θ, the torn surface can le describe as the ser of points

$$
\begin{array}{ll}
x=r_{x}(r+\cos \phi) \cos \theta & ,-\pi \leq \phi \leq \pi \\
y=r_{y}(r+\cos \phi) \sin \theta, & -\pi \leq \theta \leq \pi \\
z=r_{z} \sin \phi .
\end{array}
$$

Projection

- Projection is the transformation of points in a coordinals system of dimension ' n ' to a system of dimension les than ' n '.
* Generally a 3-Dimensional object is projected to a 2-D object
* The are mainly 3 terms used is projection
i) Center of projection - point from whore the projection is take
ii) projection plane - plans on which projection of object is form
iii) projectors - lines emerging from the centre of projection and intersecting the projection plane after passing through a point on the object.

There are mainly two basic projection method.

- parallel projection
- perspective projution
- parallel projection :-. In this projection coordinate poscleoris are transformed to the view plane along parallel lenis is projeilois all 11 el fo each other
- Canter of projection is at infinity
- Mainly used for scale drawing of 3D object

fig: parallel projection of an otject to the view plane
- perspective pegection:-. In this peguction object position are tranfoumed to the view plane along (ines that converge to a point called the projution reference point (centre of pogjation) - The projected view is determined by calculating the intersection of the pegition lines with the vied plane
- Centre of projection is at finite distance

fig: prespective projection of an object to the Vies plane.
parallel projections
- A parallel purgation is formed by extending parallel his from each vertex of the object until they intersex the plane of the screen.
- parallel peogeilion preserves Relative porportion of the object and this method is used to produce scale drawings of the 3-D objects.
- Accurate view of the various sides of the object can le obtained with the parallel purgations.
- But the parallel projection does nor give the realistic Repusentation.

Heed. 30 object is represented in 2-D plane. So the z coordinate can le discarded and the otjeit can be project in the 'ry plane.

Let the dissection of projection $=\left(x_{p}, y_{p}, z p\right)$
Consider a point on the object $\left(x, y, y_{1}, z_{1}\right)$
Then the projected point to be determined an (x_{2}, y_{2}) and the otiget is to determine is $x y$ plane, so that z-Coordinate will be zero.
Then the equation for a line passing through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and the dicution of projection with the use of peramatiic form as

$$
\begin{aligned}
& x_{2}=x_{1}+x_{p} u \\
& y_{2}=y_{1}+y_{p} u \\
& z_{2}=z_{1}+z_{p} u
\end{aligned}
$$

$z=0$ then equation of z becomes

$$
\begin{gathered}
0=z_{1}+z_{p} u \\
z_{p u}=-z_{1} \\
u=-\frac{z_{1}}{z_{p}}
\end{gathered}
$$

sub u in ' x 's ' y ' equation

$$
\begin{aligned}
& x_{2}=x_{1}-z_{1}\left(\frac{x_{p}}{z_{p}}\right) \\
& y_{2}=y_{1}-z_{1}\left(\frac{y_{p}}{z_{p}}\right)
\end{aligned}
$$

The homogenous matrix form of the equation can he written as

$$
\left[\begin{array}{llll}
x_{2} & y_{2} & z_{2} & 1
\end{array}\right]=\left[\begin{array}{ll}
x_{1}, y_{1} z_{1},
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{-x_{p}}{2 p} & \frac{-y_{p}}{z_{p}} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In coculum matrix it can lu written as

$$
\left[\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \frac{-x_{p}}{z_{p}} & 0 \\
0 & 1 & \frac{-y_{p}}{z_{p}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1} \\
1
\end{array}\right]
$$

(1) The parallel probation can les specify with the projection vectors that defines the direction for the pegection line projution. They an of two types

1) Orthographic parallel projection
2) oblique parallel projection

Orth ographic parallel pegection

- Projectors are perpendicular to the view plane in orthographic projection
- Since the projection is $L^{\text {ae }}$ it gives the true size and shape of a single plane face of the object.
* Orthographic projection do nor change the length of the line segments which are parallel to projection plane.
- It is used to produce the front side, and top view of the object.
* Front side projection of an object es called elevations
- Top orthographic projection is called plan view.
- Matrix for projection onto the $x=0$ plane is

$$
P_{x}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Here x colum is all zero.

* Matrix for projection onto the $y=0$ plane is

$$
P y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

* Matui for projection onto the $z=0$ plane is

$$
P_{z}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Single onthogephic projection does nor give suffient information to reconstruct the shape of the object. So multiple
orthographic projection are Required called multiverins.
By combining multiple view like top, bottom, front, light and of lye side view of the object the whop object can be visually reconstructed.
There Views an used frequently.
\& Front v ier $-x y$ plane (when $z=0$)

* Right view - yz plane (when $x=0$)
* Top view - $z x$ plant (when $y=0$)
plane Vied

- Orthographic projections that display more than once face of an object is called axconometrii orthographic peojution subcategouis of axonometrie projection an
- I sometrie
- Dimetric
- Trimetric

Isometrii-Diviction of projection makes equal angles wits all three principal axis
Dimetric - Evection of projection makes equal angles wish exactly two of the principal axis
Trimetric - Diction of projection maker unequal angle With the there principal axis
oblique parallel peojeition
In this piogetion the angle between the pegielos and the plane of projection is nor equal to 90°.

- projection are non-perpendicular to view plane.
- Oblique parallel projection is seen in form of shadow of any object due to sunlight. Thus in this type of projection normally the shadow is displayed and body is nor displayed.

Subcategovis of oblique projection
i) Cavalier projection
ii) Cabinet progeition

cavalier
 cabinet
Cavalier projection is obtained aten the angle between the oblique projectors and the plane of projection is 45°. Foreshovering factors of att 3 principal direction ar equal is $f=1$ Cabinet projection, the angle between the oblique peojealores, and the plans of progition is 63.43°. It is used to correct the distation that is produced by cavalier projection An oblique projection for which the foreshortening factor for edge $\perp^{a 1}$ to the plane of peogiction is on-half. ie $f=4_{2}$.

Projection on $x y$ plane with rays along a given direlitin
Consider a point $p(x, y, z)$ on the $z=0$ plane.
Let $P_{a_{b}}\left(x_{p}, y_{p}\right)$ is an oblique projection of the point p $\operatorname{Por}(x, y)$ is the orthographic peogition of p on the $z=0$ plane.
θ - angle mode by L with x-axis
Let L be the length of the line joining points $\operatorname{pob}\left(x_{p}, y_{p}\right)$ and $\operatorname{Por}(x, y)$
The projection coordinates can lu e expressed in term of x, y, L and θ as.

$$
\begin{aligned}
& x_{p}=x+L \cos \theta \\
& y_{p}=y+L \sin \theta
\end{aligned}
$$

Length L depends on the angle α and the L coordinate of the point to be projected

$$
\tan \alpha=\frac{z}{L} \Rightarrow L=\frac{z}{\tan \alpha}=z L_{1} \quad \text { when } L_{1}=\frac{1}{\tan \alpha}
$$

when $z=1, L_{1}=L$.
The oblique projection equation can be watten as

$$
\begin{aligned}
& x_{p}=x+z\left(L_{1} \cos \theta\right) \\
& y_{p}=y+z\left(L_{1} \sin \theta\right)
\end{aligned}
$$

Considering $x_{p}=0$ we get the following matrix a

$$
\left[\begin{array}{c}
x p \\
y p \\
z p \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & L_{1} \cos \theta & 0 \\
0 & 1 & L_{1} \sin \theta & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

This is the standard matix for oblique projection onto $z=0$ plane.

Perspective projection

- perspecture projection preserves the property of an object which ar far andy from the viewer. It pursers the size.
- To obtain the prespecturi projection, the points along the projection lines which are nor parallel to each other is transformed and converge to meet at a finite point known as projection reverence point or center of projection
- The projected view is obtained by calculating the intersection. of the projection lines with the view plans.

Transformation Matrix for perspective projection consider the canter of projection is at $\left(x_{c}, y_{c}, z_{c}\right)$ and the point on the object is $\left(x_{1}, y_{1}, z_{1}\right)$ then the parametric equation for the line containing these points can le guin as

$$
\begin{aligned}
& x_{2}=x_{c}+\left(x_{1}-x_{c}\right) u \\
& y_{2}=y_{c}+\left(y_{1}-y_{c}\right) u \\
& z_{2}=z_{c}+\left(z_{1}-z_{c}\right) u
\end{aligned}
$$

where ' u ' is a parameter
for projuted point z_{2} is 0 , thergore the equation for z_{2}
can le Written as

$$
\begin{aligned}
& 0=z_{c}+\left(z_{1}-z_{c}\right) u \\
& u=\frac{-z_{c}}{\left(z_{1}-z_{c}\right)}
\end{aligned}
$$

Sub u in x_{2} and y_{2} equation ξ we got.

$$
\begin{aligned}
x_{2} & =x_{c}-z_{c} \frac{\left(x_{1}-x_{c}\right)}{\left(z_{1}-z_{c}\right)} \\
& =\frac{x_{c} z_{1}-x_{c} z_{c}-x_{1} z_{c}+x_{c} z_{c}}{z_{1}-z_{c}} \\
& =\frac{x_{c} z_{1}-x_{1} z_{c}}{\left(z_{1}-z_{c}\right)}
\end{aligned}
$$

$$
\text { and } \begin{aligned}
y_{2} & =y_{c}-\frac{z_{c}\left(y_{1}-y_{c}\right)}{z_{1}-z_{c}} \\
& =\frac{y_{c} z_{1}-y_{c} z_{c}-z_{c} y_{1}+z_{c} y_{c}}{z_{1}-z_{c}} \\
& =\frac{y_{c} z_{1}-z_{c} y_{1}}{z_{1}-z_{c}} \\
\therefore x_{2} & =\frac{x_{c} z_{1}-x_{1} z_{c}}{z_{1}-z_{c}} \\
y_{2} & =\frac{y_{c} z_{1}-y_{1} z_{c}}{z_{1}-z_{c}}
\end{aligned}
$$

The homogenous matrix can lu e writes as

$$
\left[\begin{array}{c}
x_{2} \\
y_{2} \\
z_{2} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
-z_{c} & 0 & x_{c} & 0 \\
0 & -z_{c} & y_{c} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & -z_{c}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
y_{1} \\
z_{1} \\
1
\end{array}\right]
$$

Vanishing pants

- perspective pejection produces realistic veins but doa nor preserve relative proportion of object demenicion.
- Projection of distant objects are smaller than the pagiatioi of object of the same size that ane close to the Projection plane (centre of projection). This features of perspective projection is known as perspective foreshortening
- Another feature of perpecture projection is the illusion that, after perfection certain set of parally lines appear to most at some point on the projidas plane- Then point ane called vanishing point-.
- Each set of projected parallel lines have separate vanish, point.
- A scene can have any number of vanishing points depending on how many sets of parallel lines are then in the scene.
- The vanishing point for any set of lines that are parallel to one of the perncipal axis of an object is rejered to as a principal vanishing point or axis Vanishing point
- The principal vanishing point with the oxentalion of the progution plane and perspective proguitions are clarified as
\rightarrow one paint projection - only one pionapal axis interest the plan \rightarrow Two point progiction-two principal axis intersect the plane of position \rightarrow There point peojection-there principal axis intersect the plane of Progituin

Coordinate decciphin

one -point peupectim progulain

Two point perspective pigection

These-point perspectine projution

One-point perspective peojection occurs only one prineipal axis intersects the plane of peogestion. There ase 3 types of one-point perppective transformatios
i) when projectors are located at x-ancis is guins by

$$
\begin{aligned}
{\left[\begin{array}{lll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right] } & =\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & p \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
x & y & z(p x+1)
\end{array}\right]
\end{aligned}
$$

i) when projeulors an located an y-axis is gevin by

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right]=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & q \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { varishing poast }=\left[\begin{array}{lll}
0 & \frac{1}{q} & 0
\end{array}\right] \text { of progedin }=\left[\begin{array}{lll}
0 & \frac{-1}{9} & 1
\end{array}\right] \text {. }} \\
& =\left[\begin{array}{lll}
x & y & z(q y+1)
\end{array}\right]
\end{aligned}
$$

ii) when progictors are placed at z-axis is given by

$$
\begin{aligned}
{\left[\begin{array}{lll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right] } & =\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
x & y & z(r z+1)
\end{array}\right] \quad \text { centue of projchion }\left[\begin{array}{lll}
0 & 0 & \frac{-1}{\gamma}
\end{array}\right]
\end{aligned}
$$

Two point perspective projection occurs when the plane of projection intersects exactly two of the principal axis and is given by

$$
\left.\left.\left.\begin{array}{rl}
\text { and is given } & b y \\
x^{\prime} y^{\prime} & z^{\prime}
\end{array}\right] \quad 1\right]=\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & p \\
0 & 1 & 0 & q \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right]
$$

Center of projection on $x-a x i s=\left[\begin{array}{llll}-1 / p & 0 & 0 & 1\end{array}\right]$
center of projection on y-axis $=\left[\begin{array}{lll}0 & \frac{-1}{q} & 0\end{array} 1\right]$
vanishing point on x-axis $=\left[\begin{array}{llll}\frac{1}{p} & 0 & 0 & 1\end{array}\right]$
vanishing point on y-axis $=\left[\begin{array}{llll}0 & \frac{1}{q} & 0 & 1\end{array}\right]$.
There point perspectui projection occurs when the peogeitris plane intusect's all these of the principal axis. ie none of the principal axis is parallel to the projection plans. The need of 3-point perspecteie transformation is to reconstued the of shape of a 3-D object. The matrix representation of 3 -point peespectirie transformation is

$$
\begin{aligned}
& \text { transformation is } \\
& \begin{aligned}
{\left[\begin{array}{lll}
x^{\prime} y^{\prime} & z^{\prime} & 1
\end{array}\right] } & =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & p \\
0 & 1 & 0 & q \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
x & y & z & (p x+q y+r z+1)
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

Center of projulion on x-axis $=\left[\begin{array}{llll}-y p & 0 & 0 & 1\end{array}\right]$
centre of projection on 4 -axis $=\left[\begin{array}{llll}0 & -1 / q & 0 & 1\end{array}\right]$
center of projection on z-axis $=\left[\begin{array}{llll}0 & 0 & -4 / r & 1\end{array}\right]$
Vanishing point on x-axis $=\left[\begin{array}{llll}1 / p & 0 & 0 & 1\end{array}\right]$
vanishing point on y-axis $=\left[\begin{array}{llll}0 & 1 / q & 0 & 1\end{array}\right]$
vanishing point on z-axis $=\left[\begin{array}{llll}0 & 0 & 1 / r & 1\end{array}\right]$
Examples on peojation
Q To find orthographic peogeition of a unit cull onto the $x=0, y=0$ \& $z=0$ plane.
solution: The coordinate of the Unit cull in matrix notation is

$$
\begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E \\
& F \\
& G \\
& H
\end{aligned}\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Transformation matrix for $x=0$ plan is $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Orthographic projection onto $y=0$ plane is

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Orthographic projection onto $z=0$ plane is

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Q. Derive the equation of parallel projection onto the $x y$ plane in the diction of projection $v=a \hat{i}+b \hat{j}+c \hat{k}$ solution:- Let $A(x, y, z)$ be any point and $B\left(x_{p}, y_{p}, z_{A}\right)$ is the parallel projection of A on $x y$ plane. The vector $\overrightarrow{A B}$ is defined as

$$
\overrightarrow{A B}=\left(x_{p}-x\right) \hat{i}+\left(y_{p}-4\right) \hat{j}+\left(z_{p}-z\right) \hat{k}
$$

$\sin e r \overrightarrow{A B} \|^{\text {el }}$ to v, i $\overrightarrow{A B}=t u$ when t is a constant

$$
\begin{aligned}
i\left(x_{p}-x\right) \hat{i} & +\left(y_{p}-y\right) \hat{j}+(z p-z) \hat{k} \\
& =t\left(a \hat{i}+b_{j}+c \hat{k}\right)
\end{aligned}
$$

ii $x_{p}-x=a t$

$$
\begin{aligned}
& y_{p}-y=b t \\
& z p-z=c t
\end{aligned}
$$

since the point $B\left(x_{p}, y_{p}, z_{p}\right)$ fall x_{0} on $x y$ plane $z_{p}=0$

$$
\begin{aligned}
\therefore 0-2 & =c t \\
\rightarrow t & =\frac{-2}{c}
\end{aligned}
$$

Sub t in above equate

$$
\begin{aligned}
\therefore \quad & x p-x=a\left(\frac{-z}{c}\right) \\
& x p=x-\frac{a z}{c}
\end{aligned}
$$

And $y_{p}-y=b\left(\frac{-z}{c}\right)$

$$
\begin{aligned}
& y p=y-\frac{b 2}{c} \\
& z p=0
\end{aligned}
$$

The -leansfomation mater of 4×4 is of the form

$$
\left[\begin{array}{c}
x p \\
y p \\
z p \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & -a / c & 0 \\
0 & 1 & -b / c & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Q Find the Transformation for
(a) Cavalier projection with $\theta=45^{\circ}$
(b) Cabinet projection with $\theta=30^{\circ}$
(C) Draw the peogition for the unit cull for each beanfoumaties Station:-:
a) for a cavalier projection there is nolines $1^{\text {ar }}$ to the xe plane. It make $\theta=45^{\circ}$ \& $f=1$ (Cavalier peogeition is equal is all 3 axis$) \quad\left(\cos 45=\frac{1}{\sqrt{2}} \quad \sin 45=\frac{1}{\sqrt{2}}\right)$
The transformation required is

$$
\left.\begin{array}{l}
T=\left[\begin{array}{cccc}
1 & 0 & f \cos \theta & 0 \\
0 & 1 & f \sin \theta & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\\
\| \downarrow \frac{f}{}=1 \\
T_{1}=45
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 1 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

\rightarrow Canalize projection transformation for $\theta=45^{\circ}$
(Column matrix of canalises)
b) A cabinet peojution is an oblique projection with $f=1 / 2$ and $Q=30^{\circ}$. we have. $\left(\cos 3 \theta=\frac{\sqrt{3}}{2}\right)\left(\sin 30=\frac{1}{2} \frac{1}{2}\right)$

$$
T^{\prime}=\left[\begin{array}{cccc}
1 & 0 & \frac{\sqrt{ } 3}{4} & 0 \\
0 & 1 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

\rightarrow cabinet progicition transformation for $\theta=30^{\circ}$.
(Column matrix of cabinet)
c) The vertices of the unit cure in homogenous Coordinate system is given by.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \text { (Row matui fir cube unit) }
$$

Apply Teansfamation matux τ_{1} to coordinate matrix.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\frac{1}{\sqrt{2}} & 1+\frac{1}{\sqrt{2}} & 0 & 1 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 1 \\
1+\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 1 \\
1+\frac{1}{\sqrt{2}} & 1+\frac{1}{\sqrt{2}} & 0 & 1
\end{array}\right]
$$

The image coordinate of a cube an

$$
\begin{array}{ll}
A=(0,0,0) & E=\left(\frac{1}{\sqrt{2}}, 1+\frac{1}{\sqrt{2}}, 0\right) \\
B=(1,0,0) & F=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \\
C=(1,1,0) & G=\left(1+\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \\
D=(0,1,0) & \mu=\left(1+\frac{1}{\sqrt{2}}, 1+\frac{1}{\sqrt{2}}, 0\right)
\end{array}
$$

To dean the cabinet pioguction, the image coordinates can he find by applying the transformation matrix to the coordinate malui and the final matrix is given by.

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] .\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{\sqrt{3}}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
\frac{\sqrt{3}}{4} & 1+\frac{1}{4} & 0 & 1 \\
\frac{\sqrt{3}}{4} & \frac{1}{4} & 0 & 1 \\
1+\frac{\sqrt{3}}{4} & \frac{1}{4} & 0 & 1 \\
1+\frac{\sqrt{3}}{4} & 1+\frac{1}{4} & 0 & 1
\end{array}\right]
$$

The image coordinates are

$$
\begin{array}{ll}
A^{\prime}=(0,0,0) & E^{\prime}=\left(\frac{\sqrt{3}}{4}, 1+\frac{1}{4}, 0\right) \\
B^{\prime}=(1,0,0) & F^{\prime}=\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, 0\right) \\
C^{\prime}=(1,1,0) & G^{\prime}=\left(1+\frac{\sqrt{3}}{4}, \frac{1}{4}, 0\right) \\
D^{\prime}=(0,1,0) & H^{\prime}=\left(1+\frac{\sqrt{3}}{4}, 1+\frac{1}{4}, 0\right)
\end{array}
$$

Visible Suyare detection Method.
In the graphics display systems we need to identify these part er of a scene that ar visible from a chosen Viewing Algorithm.
There are different approaches used to solve then putter and the different algorithms an crated for the efficient identification of visible objects. for different. types of application.
some of the method have certain hequeements as follows,
\rightarrow Some onsthods requires more space
\rightarrow some require_ more Computation power
\rightarrow Some methods are applied to special type of object. selection of each method depends on the following parameter
\rightarrow Depending on the complexity of the scene
\rightarrow Type of the object to be displayed
\rightarrow Available Equipments.
\rightarrow Type of diplay to bo generated (animated or static)
The Algorithms used to detect the visible suyace ane Referred as Visible sugace detection method or hidden Suras elimination methods.
UDM is classified as
Visible Sujace Detection Method

Object span Method
Image space Method
Object space Method
Image space Method

- visible suyaus an detuminad - visibility is decided point by by compare objuls and parts of the point at each pixel position object to each other within the scone definition.
- Method are developed in vector Graphics (Random scan)
- Accuracy for visible suypersare - continuous operation on the projection plane.
- Methods an developed in Raster scan system.
- output is produced in less count of time
- Disuate in spare.

The classification of object space Method and Image space Method is as follows.

Back Face Removal

- Back fare Removal method is a fast and simple method for colentitying the back faces of a polyhedron i based on the ' inside-outside' tests.

A point (x, y, z) is "inside" a polygon suzan with plane parameters A, B, C and D if

$$
A x+B y+C z+D<0
$$

when an inside point is along the line of sight to the suyace, then the polygon suygue is a back face. The above test can be considered by the normal vector ' N ' to the polygon sugar.
the vector N has Cartesian component i (A, B, C).
Consider a vector ' V ' $\dot{\Delta}$ a vector in the viewing direction from the camera (on eye) position as guin in the following figure.

$N \rightarrow$ Normal vector: polygon face
$v \rightarrow$ Vector in viesis Dientioss

If $V \cdot N>0$ then polygon face is backface If $V \cdot N<0$ then polygon face is frontface.
If the object description have been converted to projection coordinates and our viewing direction is parallel to the v sewing z_{v} axis then the vector coordivials v can be whiten as $V=\left(0,0, V_{2}\right)$ and

$$
V \cdot N=v_{2} c
$$

So we need to considu the sign of $C e^{\text {the }} z$ component of the normal vector. N.
In a Right-handed viewing system with viewing deredion is along the negative z_{1} axis, as shown in the figure, the polygon is a back face if $c<0$.

Since v is in $-z v$ axis,
the value $V_{z} c>0$ (the) ie $-V_{z x} x-c=V_{z} c$
$\because c<0$ the polygon face is back face
NB:-
If the normal vector V has z component fer ie $c=0$ then the sugace cannot be seen by the viewer. In general if the normal vector z-component value $c \leq 0$ then the suyace is backface in light handed system.

In case of the left handed system the viewing division is parallel to z-axis is alonge the positive z-axis.
Back faces have normal vectors that points away from the viewing divictios and is identified as $c \geq 0$
$\therefore V_{z} C=+V_{2} x+c=V_{z} c>0$ is polygon has backeface when $C \geq 0$ in lefthanded system. Limitation of Back far Removal

- Partial visible fans cannot be detected.

Note:-
If the Normal vector points to words the viewer then the face is visible is a front face otherwise the face is hidden. (back fac) and should he removed.
Detect the z-component of the nounal vector. if z-compos is positive then the polygon face is towards the vive If it is negative then polygon face are away from the user.
Depth Buffer Method (z-Buffer Method)

- Depth Buffer method is a commonly used image-space approach to detect the visible suyace
- This method compares suyace depth at each pixel position on the projection plane.
- This procedure is also called z-buyer method since the object depth is usually measured from the view
plane along the z-axis of a viewing system.
- This method usually applied to the scenes containing only polygon sugared.
- In the projection transformation each polygon surface coordinate (x, y, z) is convected into projection point (x, y) on the view plane.
- For each pixel position (x, y) on the $v i$ is plans, the object depth can the compared by comparing z-value.
- The following figure shows there sugar at varying distance projection line from position (x, y) is a view plane taken as $\left(x_{v}, y_{v}\right)$ plane.
- suejau S_{1} is closest at this position, so its suyan intensity value at (x, y) is saved.

- Depth Buffer can be implemented by using

2) Depth Buffer
ii) Refresh Buffer

Depth Buffer is used to store the depth value for each (x, y) position $\overbrace{0}$ the suyaces are processed Refurh Buffer stores the intensity value for position.
procedures of Depth-Buffer method

- Initially all position in the depth buyer an set to 0 (minis. depth) and the refers buyer is initialized to backgrand inters
- Each surface in the polygon is processed, one scan line of a time and calculate the depth values (z-value) at ene, pixel (x, y) position.
- The calculated depth is compared to the perviously stored value in the depth buffer at that position.
- If the calculated depth is greater than the previous value stoned in the depth larfere, then the new depth value is stoned in the buffer and the suyace intensity in that position is determined and place the intensity value in the refresh bree for the same pixel position (x, y)
Depth-Buffer Algorithm: -

1. Initialize the depth buyer and Refresh buyer so that for all buyer position (x, y)

$$
\operatorname{depth}(x, y)=0, \text { repesh }(x, y)=I_{\text {badgraund }}
$$

2. For each portion on each polygon suyace, compare depth values to perviously stored values is the depth buffer to determine vistriticy

- Calculate the depth z for each (x, y) position on the polygon
- If $z>\operatorname{depth}(x, y)$ then ser

$$
\operatorname{depth}(x, y)=z, \text { Refresh }(x, y)=I_{\text {sun }}(x, y)
$$

where I mackgnd is the value of background intensity and Isuy (x, y) is the projected intensity value for the susan at peal position (x, y).
After processing all suyber, the depth buyer contains depth Values for the visible sugars and the refresh buffer contains the corresponding intensity values for those suyacer.
Depth value (2 -value) for a suyace position (x, y) are Calculated from the plane equation for each sugar

$$
\therefore \quad z=\frac{-A x-B y-D}{C}
$$

- x value and y-value of the adjacent scan line is differ by 1

- If the depth of the position (wy) has been determined to be z, then the depth z i of the next postivi $(x+1, y)$ along the scanline can be oblainad as

$$
\begin{aligned}
z^{\prime} & =\frac{-A(x+1)-B y-D}{C} \\
& =\frac{-A x-A-B y-D}{C} \\
& =\frac{-A x-B y-D-\frac{A}{C}}{C} \\
& =Z-\frac{A}{C} \\
\therefore & z^{\prime}=Z-\frac{A}{C} \text { at }(x+1, y)
\end{aligned}
$$

The ratio - A / C is constant for exch suyace.

- Succeeding depth value across the scan line are obtained from preceding value with a single Addition with A / C.
- On each scan line: the depth value is calculated on the lyt edge of the polygon that intersects the scanline.
The depth value (2-value) at the position $(x, y-1)$ is calculated with the slope.

$$
\begin{aligned}
\operatorname{slop} m & =\frac{y-y^{\prime}}{x-x^{\prime}} \quad y^{\prime}: y-1 \\
& =\frac{y-y+1}{x-x^{\prime}}=\frac{1}{x-x^{\prime}}
\end{aligned}
$$

Note:-
If Viewer is viewing through $+v e z$-axis the,

$$
\text { ie } x-x^{\prime}=\frac{1}{m}
$$ the surface close to the Viewer is having larger

$$
x^{\prime}=x-\frac{1}{m}
$$

$$
\begin{aligned}
& z_{y-1}^{\prime}=\frac{-A\left(x-\frac{1}{m}\right)-B(y-1)-D}{C} \\
&=\frac{-A x+\frac{A}{m}-B y+B-D}{C} \\
&=\frac{-A x-B y-D}{C}+\frac{A}{m}+B \\
& C
\end{aligned}
$$ z-value ie sugar clew to the viewer has zmax: value.

And if viewer is viewing through, eve z-axis then the surface close to the viewer is having Smaller z-value ie shuyce ie sugar clos to the viewer has $z \mathrm{mi}$ value.
when $m=\alpha$ (infinity) then $z_{y-1}^{\prime}=z+\frac{B}{C}$

- Allunalive approach used is the z-Buffer Algorithm is Bresenhami method of Algosithen.
Disadvantage
- Time cons uming
- Requires two Additional buffer and hence need a large mumay. - Deals only with the opaque suyaces nor more than one suyace A-Buffer Method
A-Buffer Method is the extension of z-longer method.
- A Buffer method expands the depth buffer so that each position in the brefees can refuence a linked list of sugars.
- More than one suyace intensity can lu taken into Consideration at each pal positioned and object edges are antialised (smoothening)
- Each position in the A-buffer has two field - Each position in the \rightarrow depth field - stores a positive or negative heal
number
\rightarrow Intensity field-stores sugar intens idly information or a pointer value.

Multiple sages overlap.
Single-suyar oualey

- If depth field ie $d>0$, the number stored at that position is the depth of a single suysen oveclappuig The intensity freed store $R G B$ component of the suyan color at that point s percentage of pixel converge
- If the depth field value is negative is $d<0$, then the number stored at that position indicates the multiple suyace contribution to the pixel intensely.
- Data for each suyace is tho linked list inlude
$\rightarrow R G B$ intensity component
\rightarrow percentage of teanspouney
\rightarrow depth
\rightarrow percentage of are coverage
\rightarrow Suyace identifier
\rightarrow surface rending parameters
\rightarrow pointer to next suyace.
- In A-buffer Algorithms scan line are processed to determine suyase overlap of pixel across the induridual Scan lines.
- A buffer algorithm an used to vein the background opaque suyan through the foreground transparent surge

fy: Viewing an opaque suave through teanspanent snyace

Scan line Method

* This is an image-space method used for heonoving hidden suyaces
* This method is an extension of the scan-line algorithm for filling polygon interiors
* This method deals with, the multiple surface instead of filling one suyace.
* As each scan line is processed, all polygon suyaces intersecting that line are examined to determine which sugars are visible.
* Across each scan line, depth calculations are made for each overlapping surface to detumine which is nearest to the view plane.
* when the visible suyace has been determined, the intenicly value for than position is entered into the Refresh brjper.
* Thees table r are set up for the various surfaces they are
i) Edge Table
ii) polygon table
ii) Active Edge table
* The edge table contains coordinate endpoints for each line in the scene, the inverse slope of each line and pointers into the polygon cable to identify The sugar bounded by each line.

$$
\begin{array}{|l|l|l|l|}
\hline x & y_{\max } & \Delta x & I D \\
\hline
\end{array}
$$

$x \rightarrow x$-coordinate of the end with the minimum y-coordinates
$Y_{\text {max }}$ - Ycoordinate of the edges at other end point
$\Delta x-1 / m$
ID - polygon identifier at each suygace.

* The polygon table contains coefficient of the plane equation for each suyace, intensity information for the sugar and pointers into edge table.

ID	lane	Coefficient	Shading
ingrain	IN /OUT		

ID -polygon sugar dentifue
plane coefficient - Coefficient i of the plane equation (A, B, C, D)
Shading information - Intensity information of the polygon
IN OOUT flag - IN OOUT flag indicates whether a position along a scandine is inside os outside of the suyace

* Active Edge table contains list of edges that cross the current scan line, sorted in order of increasing x.
* Scan lines are processed from left to right.
* The following figure illustrates the scon-line mestrod for locating visible portions of sugar for pixel position along the line

\therefore Scanshine Edge List. Surface flag

Scanting $2 \quad A D, E H, B C, F(C$

Scanting 3
$A D, E H, B C, F G$

$$
\begin{aligned}
& A B-S_{1} \\
& B C-S_{1} \\
& E H-S_{2} \\
& F C-S_{2} \\
& A D-S_{1} \\
& E H-S_{1}, S_{2} \\
& B C-S_{1}, S_{2} \\
& F G-S_{2} \\
& A D-S_{1} \\
& E H-S_{1}, S_{2} \\
& B C-S_{1}, S_{2} \\
& F C-S_{2}
\end{aligned}
$$

In scan Live 1 no sugars intersect with eachother, so the intensity values in the other areas ar s set to $\therefore=$ the background intensity
for Scantive 223 the suggaus S_{1} and S_{2} intersect at the edge IH and $B C$. In the intersection interval depth calculation must he made using the plane coefficients for the two surges and found the visible suyoue depends on the z-value
The detailed view of the scan linezis givens below

In the region $E+1-B C$, the depth calculation must le mode) for each pixel position.

- In the scan line method the Coherence property of the scanties and object is taken into account as we pass from one scanline to next. with the coherence property of the scanting unnecessary depth calculation between the edges in the adjacent scantive

Disadvantages

- Scanline Method Cannot be used to the suggree which overlap through cut or having cyclically overlap.
Depth Sorting Method (painters Algorithm)
- This method using both image space and object space operations
- Depth sorting methods peyouns the following function
\rightarrow surfaces are sorted in order of decreasing depth
\rightarrow Sugars ane scan converted in the order of the greatest depth of the suyace
* Sorting operation peyormed on both image and object span.
* Scan conversion is peyormed in image space mushed only
* Depth sorting Method is also called painleis Algm because this algorithm first sort the sugaces which are far away from the view plane. At the final Stage the surfaces which an near to the view plane au entered into the refresh buffer.
- painting of polygon suyaces onto the frame buype accoadic to the depth is carried out in several steps.
- Assume the viewing direction is along z-axis
- Suyaus are ordered according to the largest z-value. on each suyace
* Suyau S with the greatest depth is then compared to the other suyare in the list to detumine the ocuelaps in dept
* If no depth overlap occur, S is scan converted.
* If a depth overlap is detected at any point in the lir, some additional comparison is needed to determine whether any of the seypace should be Reordered.
x The abous process is repeated for the next surface in the list.

2 following rest are perfumed on each surface that overlay with 'S', if any one of the test is true, no reordering of that sugar is necessary.

1. The bounding Rectangle in the ry plane for the two sugars do nor onulap
2. Suyace ' ' is completly behind the overlapping sugace relative to the viewing position
3. The overlapping surface is completely in front of S relative to the viewing position
4. The projection of the two sugaces onto the v vie plane do nor overlap.
Test 1 is performed in two parts. First ovalap in the x-direction i checked then overlap for y-dicictuin is cheeked. If either of these direction shows no the two plane cannot obscure (noreen) on s other. The following figures shows two sugar thar overlap is z direction but not is x and y. duudirs

Test 2 8. Test 3 Can peyorm with an inside-outside polygon ter. Initially the coadinates for all vectuis of s into the plane equation for the overlapping susan and check the sign of the result.
$+S$ is behind S^{\prime} if all vertices of s are inside s^{\prime}

* S is completly infiont of S^{\prime} if all verities of ρ are outside of s^{\prime}.

Sura S Completly behind (imide) the overlapping suyau S^{\prime}

Overlapping sugar s is Completly infont (Outside) of suyau S lint S is nor Comptilly behind s^{\prime}

Terr 4 is peyormed by checking for intersection between the bounding edges of the two suyace using bini equation in the ty plane.

fig: Two suyace with overlapping bounding rectangle in the ry plane.
If all the above 4 terr facts with a particular overlapping suyau S^{\prime}, then interchange suyace S and s^{\prime} in the sorted lir.

Disadvantage
\times Algorithms get into an \because infinite loop

* If more than two sugar altunately obscure with each other then algms continually heshuylle the position of the overlapping sugace.
- Continuous reordering of the suyace can be avoided by flag any sugar.

MOD - VI
Image processing
An image may le defined as a 2-0 function $f(x, y)$, where x and y an the spatial coordinates and the amplitude ' f ' at any pair of coordinates (x, y) is called intenidy or gray level of image at that point.
when f, x and y an finite ${ }_{n}$ then diane the image is digital image.
Digital image processing refers to the processing of digital images by means of digital computer
Digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are called pidure elements, pets or pixies. pixel is the teem most widely denote the element of a digital image.
Application of image peocesing

* Image sharpening and restoration
* Medical field (x ray, CT scan, DET scan, UV imaging gte)
* Remote sensing
- Transmisicin and encoding
* Macheni/Robor Vision
* color processing
* patten Recognition
* Video processing
* Microscopic imaging

In digital image processing the input is the image of the objet and the output after digital processing is also an image with new features add to the image (intensity, resolution ste)

Fundamental steps in Digital Image processing
The fundamental steps in the digital image processing are shown in the following figure

fig: Fundamental steps in digital image processing Image Acquisition is the first process in digital image processing. In this step image is captured try a sensor and digitized. I mage acquisition stage in volues preprocering such as scaling. Image acquisition procen is generally achieved by suitable canes.
The aim of image acquisition is to transform an optical image into an array of numerial data.

In image acquisition different cameras are used for different application. film camera is used for the x-say images, for infrared images, we use camera which are sensitive to infrared radiation. For normal images cameras which are sensitive to visual spectrum an used.
4 mage Enhacement is the process of manipulating an image so that the result is more suitable than the original image for the specific application. This process improves the interpretability on perception of information in inxages for human viewers of to provide letter input for other automated image planing techniques
Image enhancement techniques hove lien widely used in many application of image peocessivy where the subjective quality of images is :important for human interpectatios.
Image Restoration is an area that also deals with the improving appearance of an image. Image Restoration is Ibjecture in the sense that restoration technique tend to be based on mathematical or peotrabilistic model of image degradation
Image Restoration is concerned with the reconstruction of estimation of the uncorrupted image from a blued and noisy image. This process tries to peyorm an operation on the image that is the inverse of the impeyections in the image formation system.

Cher Image processing is an area that has len gaining its importance because of the significant increase in the use of digital images over the intunet. This may include color modelerig and processing in a digital domain
Wavelets processing are the foundaturn for representing images in various degrees of resolution. This is useful for. data compression and for pyramidal representation Of images since the images is subdivided int the - Smaller leguris

Compression deals with the techniques for roduling the storage required to save an image on thelpidwith required to -hanmit it. Image compression is minimizing the size in bytes of a graphics file without degrading the quality of the image to an more images to be stored reduction in file size allow or memory space. It abs in a given amount of dor images to be sent over reduces the time required from web pages. The the intent or downto method used by most of families image compression (joint phi tographic Expert croup). the user are JPE \cap deals with the tools for Mosphotugical processing deals with the used in the extracting image comporaents desuiption shape. Morphological representation and destip element to an input image operations apply a structuring elem ing same size. to create an output image of the same size.

Image Segmentation procedures palition an image inti if constituent parts os object. Autonomous sogmentation os on s of the mar difficult task in digital irrige processing. A rugged (uneven) segmentation procedum burg. the process a long way towards successful solution of imaging problem that Require objeili to he identified individually. Image segmentation is an essential step is image analysis, offed representation Visualization \& many other image processing task. Representation \& Description almost always follow the output of a segmentation stage, which usually is haw pixel data constituting either the bounding of a Region or all posits in the Region they. Description deals with extracting atiebrules that result in some quantitative information of inter os an basic for differentiating one class of obziels from other. Recognition \& interputation: Recognition is the ppocey thar assigns label to an object based on the ingoanation provided by its desciptas eg: vehicle. interputation means assigning meanent to \& a recognized Object.
Knowledge Bass: Knowledge may he as simple as detailing regions of an image cohere the information of intuit is known to be. located, the limiting the search that has to be conducted in sexing
that information. The knowledge base also can lu quite complex. Such, is an interulated lis of all major possible dejects in a material inspection problem on an image database containing high resolution satellite images of a region in connection with change detection application Components of Image processing
The main components of image processing is shown on the following figure.

fig: components of image peocering
With reference to the image sensors two elements are required to acquire digital images. The first is a physical device that is sensitive to the energy radiated by the objet. The second called the digitizer which convert the output of the physical sensing device into the digisal form.

Specialized Image processing hardware consists of the digitizer plus hardware that performs other primitive operations such as ALU which peyote arithmetic such as addelion and subtraction and logical operation in parallel on images.
Computer is a general purpose and can range from a $P C$ to supercomputer depending on the application. In dedicated applications sometimes customise computer are used to achieve a required level of peyoerane
Software for image processing consists of specialized modules that peyoem specufie tasks. It include a well dyynid packages that utilizes the specialized modules and includes the capability for the user to writ code as a minimum. Sophisticated software package allows integration of modules and sognoare commands from at least one computer language.
Mass storage capability is a must component in image processing application. An image of size 1024×104 pixels, is which the intensity of each pixel is an 8-bir quantity requires one megabytes of storage space If the image is not compressed. Digital storage for image processing application falls into there caregoris
i) Short teem Storage used during processing
ii) On-lini storage for relatively fast recall
iii) Archrival storage such as magnetic tapes \& dilly one method of short teem storage is compute neman or

Can use a specialized boards called frame buffs that store one or more images \& can access rapidly usually at video rater (30 images $/ \mathrm{sec}$)
Image display are usually color tV monitors. The monitor au driven by the output of images and graphic displays cards that are an integral part of computer

Hardcopy devices are used for recording image includes system laser printers film cameras, heat sensitive devices, inkjet units and digital units such as optical $\& C D R O M$ dix. Film provides the highest possible Resolution but paper is the medium of choice for written application Networking is almost a default function in any computer
Rage amount of data in system because large amount of data inherent in image processing application. The key considualion of networking is is the image transmission bandwidth.

Representing Digital images
Digital image repusentation is classified into two types.
i) vector images
ii) Bir-map images

An image can le represented by 2-0 function of the form $f(x, y)$. The value on amplitude of ' f ' at spatial coordinates (x, y) is a positive scalar quantity whose meaning is determined by the source of the image.

Vector 9 mages
one way to describe an image using number is to delay, its contents using position and size of geometries forms and shapes like lines, curves, rectangles and circles. such an images are called vector images.
In vector images the coordinate system is used to represent the image and the coordinate system defines elements and position in relation to each other (defines each pixel position) The coordinate system is as shown in the following figure

The image to lu displayed to be translated into bitmap image and this pewees is called rasterization.
A vector image is resolution independent and the image can lu enlarged or shainked without effecting the output quality.
vector images ave the way to repeesent fonts, Logos and many illustration
Bitmap images
Bitmap on raster images are digital photographs and ar the most common form to repusent natural images and other forms of graphics thar are rich in detail.

Bitmap images refers how graphics is stored is the video memory of a computer.
The fam bitmap refer to how a given patten of bits represents in a pixel maps to a specie color. The bitmap image is shown in the following figure.

fig: Bitmap image
In the alone figures. A bitmap images are the form of an array where the value of each element is called pixel picture element corresponds to the color of that portion of the image.
Each horizontal line is the image is called scan line. while the lower value are for the dark poole.
when measuring the value for a pixel, one talus the average color of an area around the location of the pixel. A simplistic model is sampling a square this is called a lox filter.
The number of horizontal and vertical samples in the pixel grid is called raster dimensions it is specified as width x height.

Resolution is a measurement of sampling dense, Resolution of bitmap images gives a relationship betensey pixel dimension \& physical dimension.
The process of reducing the raster dimensions is called decimation this can be dons log aureaging the value of source pixels contributing to each outpull pixel.
One of the most common pixel format used is bit R orB where the led, Green and blue values an stored is interlequed memory.
Bitmap images occupy a lot of memory, image compuenion reduces the amount of memory needed to store an image. Compression ratio is the ratio between the Compressed image and the uncompursed image. These are two types of compression.
\rightarrow Rosy compression
\rightarrow Losses Comprusion
In Lossless Compression, repetition and predictability is used to repurent all the information using les memos. The original image can he restored. One of the simplest loseles image compression method is teen-length encoding In Loss Complession method, some features of the image is losted. especially this method eliminate the redundant information. When the file is uncompeeered only the part of the original information is still then. It is generally used to compress video and sound.
where a certain amount of information loss will nor be detected by mort uses. eg: Ipeor image Compression
Image Representation in 2-0
The image may be defined as a 2-D function $f(x, y)$ when x and y are spatial (plane) coordinates The amplitude if' at any pairs of coordinate (x, y) is called the intenidy or gray lend of the image at that paint.
when (x, y) and amplitude values of ' f ' are all finite discrete quantities, then the image is a digital image.

- Image is a 2-0 function $x \& 4$.
$f(x, y)$ when $x=0,1,2 \ldots N-1$
$M \rightarrow$ no: of pisces in y-diction
$f(x, y)$ can be represented as

$$
\begin{aligned}
& x, y) \text { can be represented as } \\
& f(x, y)=\left[\begin{array}{cccc}
f(0,0) & f(0,1) & \cdots & f(0, N-1) \\
f(1,0) & f(1,1) & \cdots & f(1, N-1) \\
\vdots & & & \\
f(M-1,0) & f(M-1,1) \ldots & f(M-1 N-1)
\end{array}\right]
\end{aligned}
$$

Values of $M \& N$ are totally positive and cannot he a negative value.

Basic Relationships Between pixel
Basic relationship betwan the pixel can le guin as
\rightarrow Neighlowhood
\rightarrow Adjacency
\rightarrow Connectivity
\rightarrow Paths
\rightarrow Regions 8 Boundavi
Neighbowhood
Any pixel $p(x, y)$ has two vertical and two horizons neighlowes and is given by $\{(x+1, y),(x-1, y),(x, y+1),(x, y-1)\}$ This set of pixels are known as 4 neightrows of P and is denoted by $N_{4}(P)$. All of them are at Unit divine from p.
The fore diagonal neighowe of $p(x, y)$ are gains by $\{(x+1, y+1),(x+1, y-1),(x-1, y+1)(x-1, y-1)\}$. This is denoted by $N_{0}(p)$.
The point $N_{4}(P)$ and $N_{0}(P)$ are together known as 8-neighbous of the point P, denoted by $N_{8}(P)$.
some of the points in the $N_{4}, N_{D} \& N_{8}$ may falls outside the image when p lies on the border of image

$N_{4}(P)$
(4 conneten)

$N_{D}(p)$

$N_{8}(P)$

Adjacency
Let v he the set of intensity values use to define intercity. adjacency. In a binary image $v=51\}$ if we are referring to adjacency of pixels with value 1. In a gray-scale image u contains moue elements
eg: In the adjacency of pixels with a range of intensity values 0 to 255, the set v could be any subset of then 256 value. These are 3 type of adjacency.
$\rightarrow 4$-adjacency: Two pixel $p \& q$ with value from v ane 4 -adjacent if q is in the set $N_{4}(P)$
\rightarrow 8-adjacency: Two pixel p and q with values fum v ar 8 -adjacent $f q$ is in the set $N_{8}(p)$.
$\rightarrow m$-adjacency: Two pixels p and q with values from v au m-adjacent if
i) q is is $N_{4}(p)$ or
ii) q is in $N_{0}(p)$ i the set $N_{4}(p) \cap N_{4}(q)$ has no pixel e where value are from V.

A path from pixel p with coordinates (x, y) to pixel q with
Path Coordinate (s, t) is a sequence of distinct pixels with Coordinates $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \ldots,\left(x_{n}, y_{n}\right)$ whiner $\left(x_{0}, y_{0}\right)=(x, y),\left(x_{n}, y_{n}\right)=(s, t)$ and pixels $\left(x_{i}, y_{i}\right)$ and $\left(x_{i-1}, y_{i-1}\right)$ are adjacent for $1 \leq i \leq n$. ' n ' is the length of path.
If $\left(x_{0}, y_{0}\right)=\left(x_{n}, y_{n}\right)$ the path is closed.
4-path. 8 -path and m-path can le defined on the type
of adjacency specified. The following (figure shown the path between the top right and bottom right points an. 8 -path

011
010
010
001
001

0	\cdots	
0	1	0
0	0	1

Arrangement of pixel
pixel that are 8 -adjaunt
m-adjacomy
Connected
Let S reperent a subset of pixel in an image. Two pixels p and q are said to be connected in s of these exists a path between them consisting entingly of prod in S. For any pixel p in S, the set of p pixels thar are connected to ir in S is called a connected component of S. If it only has one connected component then Set S is called a connected set.

Region.
Let R be a subset of pixels in an image. We can cal R as a region of the image if R is a connected set. Two legions R_{i} and R_{j} ane said to be adjacent if their Union forms a connected set. Regions that are not adjacent are said to be dijjoint
Boundary
The boundary also called border or contour of a region R is the set of points that are adjacent to points in
the complement of R. The border of a region is the set of pixels in the region that have atleast one bactegesend neigh tone.
Edge Detection
Edges are the pixel when brightness changes abruptly arp that point shows sharp change in the intenityfunction An edge of a image is a boundary or contour at which a significant change occurs. in some physical as pet of an image, Such as the sugace reflectance, illumination or the distance of the visible sugar from the vieure changes in the physical aspects can he a variety of ways including changes is the intensity, color. and textures.
Robert Detection
Robert cross gradient operators are used for 2-D mask when a diagonal edge detection is considered.
Robert edge detelor is based on diagonal difference.
Consider the pixel is the z-value.
consider ow pixel of interest is 75

z_{1}	z_{2}	z_{3}
z_{4}	z_{5}	z_{6}
z_{7}	z_{8}	z_{9}

z_{5}	z_{6}
z_{8}	z_{9}

The mask for the same ($z s-z_{9}$) is given as

$=$	(1)	0
0	-1	
	$=4$	

Consider another pixel z_{b}.

Edge traversal is to Z

Mask is guin as

Robert edge detector masks are given by

0	1
-1	0

1	0
0	-1

The first operator in each pair is particularly sensilini to edges that hun diagonally from the lower lye of the original image to the upper right, white the second operator in each pair detects edges running from the upper lat to the lower Right. 2×2 mask is having problem
$\rightarrow 9+$ is not easy to implement
\rightarrow No: of calculation is moire
\rightarrow No: of neighbrieing piocels considered in one go are less
3×3 mask of the Rolvect dectectons an guin a

-1	0	0
0	0	0
0	0	1

0	0	1
0	0	0
-1	0	0

Due to the disadvantage of Robust edge detector some changes are made to ir and the changes an as follows
\rightarrow size of the mask.
\rightarrow NO: of neighbowing perils considued
By considering the above changes two improved masks obtained
i) peewit
is sober
prewert s' edge detector combines uniform smoothing in one direction with the edge detection in the perpendicular direction to produce

-1	0	1
-1	0	1
-1	0	1

and

-1	-1	-1
0	0	0
1	1	1

These operators can le factored into the successive application of two simpler operator

-1	0	1
-1	0	1
-1	0	1

$$
* \begin{array}{|l|l|l|}
\hline-1 & 0 & 1 \\
\hline
\end{array}
$$

and
and

-1	-1	-1
0	0	0
1	1	1

Soles' edge detulor combines binomial $(1,2,1)$ smoothing with edge detection. It is also defined b operalón that can he factored. In solve ion ion is used by center location pro urdu image smoothening

$$
\begin{array}{rl}
\hline-1 & 0 \\
\hline-2 & 0 \\
\hline-1 & 0 \\
\hline & 1 \\
\hline & =\begin{array}{|l|l|l|}
\hline 1 \\
\hline 2 \\
\hline 1 \\
\hline
\end{array} \\
& =\begin{array}{|l|l|l|}
\hline-1 & 0 & 1 \\
\hline 1 & 1 & -1 \\
\hline
\end{array}
\end{array}
$$

and

There operators can be represented as a number of shift r, additions and subterition of the entire image. These can he peyouned very rapidly using suitable hardware.
steps peyomed in edge Detection

1. Image smoothing for note reduction
2. Detalion of edge points - operation that extracts from a image all points that are potential candidates to become edge point.

3: Edge Localization - The objective of this step is to select form the candidate edgy points only the points that are true members of the ser of points comprising as edge
Some of the rechniguee for achevining there slops ane Robert, pruitt \& sober operator
The tool of choice for finding edge strength and directions at location (x, y) of an image f is the gradient denoted by $s f$ and defined as the vector.

$$
\nabla f=\operatorname{grad}(f):\left[\begin{array}{l}
g_{x} \\
g_{y}
\end{array}\right]=\left[\begin{array}{c}
\frac{8 f}{8 x} \\
\frac{s f}{8 y}
\end{array}\right]
$$

The magnitude (length) of vector ∇f, denoted as $M(x, y)$ where

$$
M(x, y)=\operatorname{mag}(\nabla f)=\sqrt{g x^{2}+g g^{2}}
$$

is the value of the rate of change in the diction of the gradient vectors.
The direction of the gradient vector is guin by the angle

$$
\begin{aligned}
& \alpha(x, y)=\tan ^{-1}\left[\frac{g_{y}}{g x}\right] \quad \text { measured a } \\
& g_{x}=\frac{\delta f(x, y)}{8(x)}=f(x+1, y)-f(x, y) \\
& g_{y}=\frac{8 f(x, y)}{8(y)}=f(x, y+1)-f(x, y)
\end{aligned}
$$

In computer graphics, we often need to draw different types of objects onto the screen. Objects are not flat all the time and we need to draw curves many times to draw an object.

Types of Curves

A curve is an infinitely large set of points. Each point has two neighbors except endpoints. Curves can be broadly classified into three categories - explicit, implicit, and parametric curves.

Implicit Curves

Implicit curve representations define the set of points on a curve by employing a procedure that can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit function of the form -

$$
F(x, y)=0
$$

It can represent multivalue curves multiple yvalues for an xvalue multiple yvalues for an xvalue. A common example is the circle, whose implicit representation is

$$
x^{2}+y^{2}-R^{2}=0
$$

Bezier Curves

Bezier curve is discovered by the French engineer Pierre Bézier. These curves can be generated under the control of other points. Approximate tangents by using control points are used to generate curve. The Bezier curve can be represented mathematically as -

$$
\sum_{k=0}^{n} P_{i} B_{i}^{n}(t)
$$

Where p_{i} is the set of points and $\mathrm{Bni}_{\mathrm{n}}(\mathrm{t})$ represents the Bernstein polynomials which are given by -

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}
$$

Where \mathbf{n} is the polynomial degree, \mathbf{i} is the index, and \mathbf{t} is the variable.
The simplest Bézier curve is the straight line from the point P 0 P 0 to $\mathrm{P}_{1} \mathrm{P} 1$. A quadratic Bezier curve is determined by three control points. A cubic Bezier curve is determined by four control points.

Simple Bezier Curve

Quadratic Bazier Curve

Cubic Bazier Curve

Properties of Bezier Curves

Bezier curves have the following properties -

- They generally follow the shape of the control polygon, which consists of the segments joining the control points.
- They always pass through the first and last control points.
- They are contained in the convex hull of their defining control points.
- The degree of the polynomial defining the curve segment is one less that the number of defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3 , i.e. cubic polynomial.
- A Bezier curve generally follows the shape of the defining polygon.
- The direction of the tangent vector at the end points is same as that of the vector determined by first and last segments.
- The convex hull property for a Bezier curve ensures that the polynomial smoothly follows the control points.
- No straight line intersects a Bezier curve more times than it intersects its control polygon.
- They are invariant under an affine transformation.
- Bezier curves exhibit global control means moving a control point alters the shape of the whole curve.
- A given Bezier curve can be subdivided at a point $\mathrm{t}=\mathrm{t} 0$ into two Bezier segments which join together at the point corresponding to the parameter value $t=t 0$.

B-Spline Curves

The Bezier-curve produced by the Bernstein basis function has limited flexibility.

- First, the number of specified polygon vertices fixes the order of the resulting polynomial which defines the curve.
- The second limiting characteristic is that the value of the blending function is nonzero for all parameter values over the entire curve.

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is nonglobal.

A B-spline curve is defined as a linear combination of control points Pi and B -spline basis function $\mathrm{N}_{\mathrm{i}}, \mathrm{kt}$ given by

$$
C(t)=\sum_{i=0}^{n} P_{i} N_{i, k}(t), \quad n \geq k-1, \quad t \epsilon[t k-1, t n+1]
$$

Where,

- $\{$ pipi: $i=0,1,2 \ldots . n\}$ are the control points
- k is the order of the polynomial segments of the B -spline curve. Order k means that the curve is made up of piecewise polynomial segments of degree $\mathrm{k}-1$,
- the $\mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{t}) \mathrm{Ni}, \mathrm{k}(\mathrm{t})$ are the "normalized B-spline blending functions". They are described by the order k and by a non-decreasing sequence of real numbers normally called the "knot sequence".

$$
\mathrm{t} i: \mathrm{i}=0, \ldots, \ldots \mathrm{n}+\mathrm{K}
$$

The N_{i}, k functions are described as follows -

$$
N_{i, 1}(t)=\left\{\begin{array}{lc}
1, & \text { if } u \epsilon\left[t_{i}, t_{i+1}\right) \\
0, & \text { Otherwise }
\end{array}\right.
$$

and if $\mathrm{k}>1$,

$$
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
$$

and

$$
t \in\left[t_{k-1}, t_{n+1}\right)
$$

Properties of B-spline Curve

B-spline curves have the following properties -

- The sum of the B-spline basis functions for any parameter value is 1 .
- Each basis function is positive or zero for all parameter values.
- Each basis function has precisely one maximum value, except for $\mathrm{k}=1$.
- The maximum order of the curve is equal to the number of vertices of defining polygon.
- The degree of B-spline polynomial is independent on the number of vertices of defining polygon.
- B-spline allows the local control over the curve surface because each vertex affects the shape of a curve only over a range of parameter values where its associated basis function is nonzero.
- The curve exhibits the variation diminishing property.
- The curve generally follows the shape of defining polygon.
- Any affine transformation can be applied to the curve by applying it to the vertices of defining polygon.
- The curve line within the convex hull of its defining polygon.

Visual Perception

Visual perception is the ability to perceive our surroundings through the light that enters our eyes. The visual perception of colors, patterns, and structures has been of particular interest in relation to graphical user interfaces (GUIs) because these are perceived exclusively through vision. An understanding of visual perception therefore enables designers to create more effective user interfaces.

Physiologically, visual perception happens when the eye focuses light on the retina. Within the retina, there is a layer of photoreceptor (light-receiving) cells which are designed to change light into a series of electrochemical signals to be transmitted to the brain. Visual perception occurs in the brain's cerebral cortex; the electrochemical signals get there by traveling through the optic nerve and the thalamus. The process can take a mere 13 milliseconds, according to a 2017 study at MIT in the United States.

Different attributes of visual perception are widely used in GUI design. Many designers apply Gestalt principles (i.e., how humans structure visual stimuli) to the design of GUIs so as to create interfaces that are easy for users to perceive and understand. The visual perception of affordances (action possibilities in the environment) is another example of how the understanding of visual perception is a critical item in any designer's toolkit.

